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Abstract

In multi-agent systems, bipolar argumentation (BA) frameworks can be used to represent the indi-
vidual opinions of agents during debate. Recently, bipolar assumption-based argumentation (bipolar
ABA) frameworks have been combined with methods from social choice theory to aggregate such opin-
ions, producing a single framework that reflects a consensus among the debate participants. However,
there has not yet been a comprehensive study evaluating this method of aggregation. In this project,
we establish preservation results by defining the conditions under which agreement between agents,
such as shared semantic properties, can be preserved during bipolar ABA aggregation. It was found
that the preservation of properties could be guaranteed, albeit with significant restrictions to the in-
put frameworks and/or aggregation procedure. Furthermore, we build an application of bipolar ABA
aggregation by designing and implementing a debate and decision-making platform named ArgSolve.
As part of this process, we introduce a novel program for computing extensions of bipolar ABA se-
mantics, accompanied by a corresponding soundness and completeness proof. Through evaluation, it
was found that the platform presented an improvement over conversation-centric debate with respect
to expressiveness, comprehension and perceived fairness, but also showed limitations in accessibility
and usability.
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Chapter 1

Introduction

In artificial intelligence, computational argumentation [1] has emerged as a field of study concern-
ing how argumentation can be modelled and summarised. Over the years, a number of formalisms
have been proposed (such as abstract argumentation (AA) [2], bipolar argumentation (BA) [3],
assumption-based argumentation (ABA) [4]), each proposing different means of abstracting argu-
mentation. Typically, such formalisms define several semantics, which provide definitive (but varying)
notions on what sets of arguments are considered dialectically justified. For instance, the admissible se-
mantics state that non-conflicting arguments, who defend themselves against all attacking arguments,
can be labelled ‘acceptable’, in the sense that a rational agent may deem them well-justified. The sets
of arguments that are acceptable with respect to these semantics, called extensions, are considered an
output/conclusion of a given framework (an instance of an argumentation formalism) that represents
an argument. Naturally, argumentation frameworks can be used to express individual opinions in
multi-agent systems. When these opinions are held by different parties during debate, they can be
aggregated using methods from judgement aggregation [5] in social choice theory [6], producing a
collective consensus that represents a compromise across the views of the individual participants.

Social choice theory lies at the heart of democratic decision-making; examining the effectiveness of
voting mechanisms (or aggregation rules) that are pervasive throughout modern governance, such as
the paradigmatic majority rule, or more authoritarian methods, such as oligarchy or dictatorship. In
social choice theory, there is a key question of preservation (also referred to as collective rationality
[7][8]); that is, to what extent can a given aggregation rule ensure that a given property, that is satis-
fied by each individual voter, is preserved after aggregation. Studying preservation is crucial because it
exposes fundamental limitations in designing fair and consistent voting systems. Infamously, Arrow’s
impossibility theorem [9] states that achieving a perfect, all-encompassing voting system that satisfies
everyone’s preferences is unattainable.

In the context of argumentation, the issue of preservation has been studied before, such as in abstract
argumentation frameworks [10][11], focusing on the conditions under which the agreement between
agents, in the form of sharing certain game-theoretical properties of frameworks (such as admitting
the same extension under one of the semantics), is preserved after aggregation. However, aggregation
is yet to be defined for all types of framework, and indeed the aggregation of bipolar argumentation
(BA) frameworks is an open problem. During aggregation, issues may arise due to support relations (a
notion characteristic of BA frameworks) having different semantic interpretations (such as deductive
or necessary [12]) which leads to inconsistencies in the aggregated framework. However, recent work
by Lauren et al. in [13] uses bipolar assumption-based argumentation (bipolar ABA) frameworks
[12] as a universal formalism for BA frameworks with different notions of support in order to define
valid aggregation procedures. In this work, preservation results are also presented but are largely
incomplete due to a number of inconsistencies in theorem statements (where counter-examples were
found) and in the proofs thereof. Without the preservation results, bipolar ABA aggregation, as it
stands, has yet to be evaluated. What are the limitations of bipolar ABA aggregation? Can we preserve
agreement between participants during debate? Or is the reality just as pessimistic as Arrow’s theorem
suggests? Accordingly, a new study is in order. . .

Additionally, in recent years, due to the widespread availability of the internet, we have seen discourse
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Chapter 1. Introduction

grow at an unprecedented scale. The ability to communicate instantly allows discussions to readily
take place across a range of platforms, amongst any number of people and in relation to a multitude of
topics. However, the quality of these debates is of growing concern [14, 15, 16, 17]. Too often, we see
that arguments spiral into contests for popularity and are rife with logical fallacies, emphasising the
polarisation of audiences rather than promoting understanding of the topics at hand. Even arguments
conducted in good faith are often non-productive due to shortcomings in the medium itself. The lack
of depth and critical thinking in modern discourse is a troubling sign for a society that prides itself on
being informed. Now, more than ever, do we need a way to improve collective argumentation should
we hope for any useful outcome from these types of discussions.

Online debate platforms are available but tend to have significant limitations, such as poorly reflecting
the state of the debate or failing to objectively integrate the opinions of participants. Currently, there
is no system that leverages bipolar ABA aggregation to help improve debates. Hence there is an
opportunity to develop a novel application of bipolar ABA, in the form of a structured debate platform,
that exploits its ability to concisely represent debates, to compromise across participant opinions via
aggregation and to offer conclusions to debates using the extensions of each of the semantics.

Contributions: This leads us to the contributions of this project, which are threefold:

(i) the development of preservation results, both new and existing, for bipolar ABA aggregation;

(ii) the specification and implementation of a collaborative debate platform, ArgSolve;

(iii) the implementation of an answer-set program to compute the extensions for each of the different
semantics of bipolar ABA.

Report structure: In chapter 2; we introduce the theory underlining the developments in the later
sections, including bipolar ABA, judgement aggregation and answer-set programming. In chapter 3,
we discuss related work, such as existing preservation results for other argumentation frameworks,
debate systems, and programs for computing extensions for other argumentation frameworks. In
chapter 4, we develop the preservation results for bipolar ABA aggregation. In chapter 5, we present
the design and implementation of the debate platform; ArgSolve. In chapter 6, we present the ex-
tension computer with associated soundness and completeness proofs. In chapter 7, we provide an
evaluation of all the contributions. Finally, in chapter 8, we conclude by summarising the project
outcomes, suggesting future work and discussing any ethical considerations.
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Chapter 2

Background

In this chapter, we provide an overview of fundamental concepts from computational argumentation,
social choice theory, and answer set programming that is essential for understanding the later contri-
butions.

2.1 Bipolar Assumption-Based Argumentation (Bipolar ABA)

In artificial intelligence, computational argumentation is an area of research which involves mod-
elling human argumentation in order to reason about and resolve conflicting information. Bipolar
assumption-based argumentation (bipolar ABA) [12] is a form of argumentation where arguments and
attacks are derived from rules, assumptions and a contrary map.

Definition 1 A bipolar ABA framework is a quadruple ⟨L,R,A,— ⟩, where

• (L,R) is a deductive system with L a language (i.e. a set of sentences) and R a set of rules of
the form ϕ ← α where α ∈ A and either ϕ ∈ A or ϕ = β̄ for some β ∈ A; ϕ is the head and α
the body of the rule ϕ← α;

• A ⊆ L is a non-empty set of assumptions;

• — : A → L is a total map; for α ∈ A, ᾱ is the contrary of α.

In the following definitions, we assume a fixed but arbitrary bipolar ABA framework ⟨L,R,A,— ⟩.

• A deduction for ϕ ∈ L supported by A ⊆ A and R ⊆ R, denoted by A ⊢R ϕ, is a finite tree with
the root labelled by ϕ; leaves labelled by assumptions, with A the set of all such assumptions;
and each non-leaf node ψ has a single child labelled by the body of some ψ-headed rule in R,
with R the set of all such rules.

• A ⊆ A attacks β ∈ A iff ∃A′ ⊢R β̄, such that A′ ⊆ A.

• α ∈ A attacks β ∈ A iff {α} attacks β .

• A ⊆ A attacks B ⊆ A iff ∃β ∈ B such that A attacks β.

• A is conflict-free iff A does not attack A.

• The closure of A ⊆ A is defined as Cl(A) = {α ∈ A : ∃A′ ⊢R α,A′ ⊆ A,R ⊆ R}.

• A is closed iff A = Cl(A).

With these definitions, we are now in a position to introduce the bipolar ABA semantics (see Table 2.1).
The semantics characterise which sets of assumptions (called extensions) are considered acceptable in
the dialectical sense. Naturally, the acceptability of arguments can have many different interpretations
and the variety in semantics reflect this fact. For instance, some interpretations may be more conser-
vative, only accepting universally agreed-upon arguments such as in the ideal semantics, or credulous,
such as in the admissible semantics.
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Chapter 2. Background

Semantics Conditions

Admissible A is closed, conflict-free and for every B ⊆ A, if B is closed and attacks A, then A attacks B.

Preferred A is ⊆-maximally admissible.

Complete A is admissible and A = {α ∈ A : A defends α} where A defends α ∈ A iff for all closed
B ⊆ A: if B attacks α then A attacks B.

Set-stable A is closed, conflict-free, and attacks Cl(β) for each β ∈ A \A

Well-founded A is the intersection of all complete extensions.

Ideal A is ⊆-maximal such that it is admissible and A ⊆ B for all preferred extensions B ⊆ A.

Table 2.1: Bipolar ABA Semantics (for extension A ⊆ A)

A B

C D

(a)

A

B

C D

(b)

Figure 2.1

Graphical representation of bipolar ABA frameworks We can represent a given bipolar ABA
framework ⟨L,R,A,— ⟩ graphically as directed graphs by the following procedure. We denote two
distinct sets of directed edges, attacks (→) and supports (⇒):

(i) for each α ∈ A, create a node labelled with α;

(ii) for each r ∈ R (where α, β ∈ A):

(a) if r = c ← β where c is the contrary of some assumptions A ⊆ A, add an attack (β, α) for
each assumption α ∈ A where —(α) = c;

(b) if r = α← β, add a support (β, α).

Essentially, the procedure represents the corresponding bipolar ABA framework as a bipolar argumen-
tation framework [18]. As an example, take ⟨L,R,A,— ⟩ with A = {A,B,C,D}, R = {X ← C, A←
B, C̄ ← D} and —(A) =— (B) = X (where elsewhere —(α) = ᾱ). This framework can be represented
as in Figure 2.1a.

Example of extensions under different semantics To develop intuition, we present a simple ex-
ample. Let A = {A,B,C,D} where: A = “Remote work increases productivity.”; B = “Remote work
decreases productivity.”; C = “Productivity is not necessarily affected by whether work is done remotely or
in-person.”; D = “Productivity is significantly affected by whether work is done remotely or in-person.” .
The resulting framework (with added rules) can be seen in Figure 2.1b. The preferred and well-founded
extensions are {A,D} and {B,D}. The complete extensions are {D}, {A,D} and {B,D}. The ideal
extension is {D}. It is helpful to think of the preferred extensions as the different acceptable ‘sides’ of
the debate (in this case one side argues that remote work increases productivity, while the other side
argues the opposite). When the sides share agreement, this is reflected in the ideal extension (both
sides agree that productivity is affected by whether work is remote or in-person).
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Chapter 2. Background

2.2 Judgement Aggregation

Social choice theory [19][6] is a field that studies collective decision procedures and mechanisms. It
is mainly concerned with how a collective can formulate or aggregate an output on the basis of its
members’ individual inputs in an effective manner.

In judgement aggregation, individual sets of judgements on multiple (logically related) propositions are
aggregated into collective sets of judgements. A judgement is an opinion that simply states whether
a given proposition is true or false. Aggregation procedures are defined in different ways, and a
point of study in judgement aggregation is finding ‘good’ aggregation procedures that satisfy certain
properties. In general, this is a difficult problem, and, in some cases, proves impossible to satisfy
some properties (see the doctrinal paradox [20] as a situation where even logical consistency cannot
be preserved whilst using a ‘fair’ procedure).

Definition 2 In a judgement aggregation model [21]:

• the set of judges is denoted by N = {1, 2, . . . , n};

• P is a set of atomic propositions, LP is the set of all boolean formulas in propositional logic that
can be formed from the atomic propositions in P by the common logical connectives; where LP
is closed under complement;

The complement of α, ᾱ = ¬α if α is not negated, otherwise ᾱ = β for α = ¬β (i.e. it is a notion that
prevents infinitely many negated formulas being introduced into LP ).

• an agenda is denoted by Φ; where Φ ⊆ LP , Φ is closed under complement, and no tautologies or
contradictions are contained within Φ;

The agenda represents the set of propositional formulas that the judges can potentially form judge-
ments on.

• every J ⊆ Φ is called a judgement set.

Each judgement set represents an individual judge’s opinion on the agenda, where each β ∈ Ji corre-
sponds to a propositional formula that judge i personally considers to be true.

Often, should we want the set of judgement sets in the model to be ‘reasonable’, we have to impose
certain requirements:

Definition 3 Let Φ be an agenda. A judgement set J ⊆ Φ is said to be:

• complete if for each φ ∈ Φ, J contains ϕ or ϕ̄;

• consistent if there exists a truth assignment that makes all formulas in J true;

• complement-free if for each φ ∈ Φ, J contains at most one of φ and φ̄.

A judgement set that is both complete and consistent is rational, and the set of all rational subsets
of Φ is denoted by J (Φ). Individual judgement sets from the n judges are given as a profile J =
(J1, . . . , Jn), where each Ji ∈ J (Φ) is the ith judgement set.

Definition 4 A judgement aggregation procedure is a function F : J (Φ)n → 2Φ.

A judgement aggregation procedure maps each possible rational profile derived from the agenda to a
collective judgement set. The judgement aggregation procedure F is said to be complete, complement-
free and/or consistent if ∀J∈J (Φ)n(F(J) is complete, complement-free and/or consistent), i.e. it preserves
the given property after aggregation for all rational profiles. We can now define some aggregation
procedures of interest.
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Chapter 2. Background

Definition 5 The quota rule Fq, for q ∈ N , is a judgement aggregation procedure such that Fq(J) =
{φ ∈ Φ : φ ∈

⋂
i∈N ′ Ji for N ′ ⊆ N, |N ′| ≥ q}. There are several special quotas:

• weak majority has q = ⌊n2 ⌋;

• strict majority has q = ⌈n2 ⌉;

• nomination has q = 1;

• unanimity has q = n.

The quota rule sets a quota q as a threshold to accept some set of φ ∈ Φ in the collective judgement
set such that each φ ∈ Fq(J) is accepted by at least q judges.

Definition 6 Let Nv ⊆ N be a set of judges with veto power; then the oligarchic rule Fo is judgement
aggregation procedure Fo(J) = {φ ∈ Φ : φ ∈

⋂
i∈Nv

Ji}. If |Nv| = 1 then the oligarchic rule is called
dictatorship.

Essentially, the oligarchic rule ensures that each φ ∈ Fo(J) is accepted by the judges with veto power.

2.3 Aggregation Procedures in Bipolar ABA

With a bit of work, we can formally apply judgement aggregation procedures to bipolar ABA. The gen-
eral idea is to define aggregation procedures over several sets of rules proposed by different agents.
Consider a set of n agentsN = {1, . . . , n}where n ≥ 1. Suppose the agents each express their opinions
as bipolar ABA frameworks ⟨L,R1,A,— ⟩, . . . , ⟨L,Rn,A,— ⟩ (note that the language, assumptions and
contrary map remain the same, but each agent expresses different sets of rules). An aggregation proce-
dure F takes bipolar ABA frameworks as input and produces some output framework ⟨L,Ragg,A,— ⟩:

Definition 7 Let F be the set of all bipolar ABA frameworks with the same language L, set of as-
sumptions A and contrary mapping —. A bipolar ABA aggregation rule is a mapping F : Fn → F from
n bipolar ABA frameworks into a single bipolar ABA framework. Given n bipolar ABA frameworks
⟨L,R1,A,— ⟩, . . . , ⟨L,Rn,A,— ⟩, F returns a single aggregated bipolar ABA framework ⟨L,Ragg,A,— ⟩.

In this context, a judgement aggregation model can be defined where the agenda Φ = {∪i∈NRi} and
each agent i trivially proposes the judgement set Ji = Ri. We can therefore use any judgement aggre-
gation procedure from 2.2 Fj as a bipolar ABA aggregation procedure F if we take F (⟨L,R1,A,— ⟩, . . . ,
⟨L,Rn,A,— ⟩) = ⟨L, Fj(J),A,— ⟩) where J = (J1, . . . , Jn). To make these conversions explicit, we
state them below. Note that below a profile of rules is a set R = {R1, . . . ,Rn}, which conve-
niently defines the set of input rules from the input frameworks ⟨L,R1,A,— ⟩, . . . , ⟨L,Rn,A,— ⟩. Fur-
ther, we may also use the shorthand Ragg = F (R) in place of the more verbose ⟨L,Ragg,A,— ⟩ =
F (⟨L,R1,A,— ⟩, . . . ,⟨L,Rn,A,— ⟩).

Definition 8 The quota rule Fq, for q ∈ N , is a bipolar ABA aggregation rule such that Fq(⟨L,R1,A,— ⟩,
. . . , ⟨L,Rn,A,— ⟩) = {r ∈ R | r ∈

⋂
j∈N ′ Rj for N ′ ⊆ N, |N ′| ≥ q}. Fq is called nomination when

q = 1, and is called unanimity when q = n.

Definition 9 Let Nv ⊆ N be the agents with veto power. The oligarchic rule Fo is a bipolar ABA
aggregation rule such that Fo(⟨L,R1,A,— ⟩, . . . , ⟨L,Rn,A,— ⟩) = {r ∈ R | r ∈

⋂
j∈Nv

Rj}. Fo is
called a dictatorship when |Nv| = 1.

Definition 10 An agent i ∈ N has veto powers under aggregation rule F , if F (R) ⊆ Ri for every
profile R.

6
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Aggregation example Consider the following example where N = {1, 2, 3} and the distribution of
rules amongst agents are as such:

r1
r2
r3

r1 r1
r2

r1

r3

R1 R2 R3 R4

Then Ragg = {r1, r2, r3} by the nomination rule, Ragg = {r1} by unanimity, Ragg = {r1, r2, r3} by the
quota rule with q = 2, and Ragg = {r1} = R2 by dictatorship with Nv = {2}.

Properties of bipolar ABA aggregation procedures The bipolar ABA aggregation procedures that
we are studying represent only a small subset of a much larger collection of possible aggregation
rules. In fact, there are countless ways to aggregate rules (and indeed we may want to aggregate
other items such as assumptions etc.). Therefore, it is helpful to examine the shared properties that
characterise the procedures we are investigating: we can reference them in future proofs and also
clearly delineate the scope of the aggregation rules in this project. It will be useful to refer to the
set of agents who accept a given rule r (i.e. r ∈ Ri) in a given profile of rules R. We denote this as
NR

r = {i ∈ N | r ∈ Ri, Ri ∈R}.

Definition 11

• F is anonymous, if F (R) = F (Rπ(1), . . . ,Rπ(n)) holds for all profiles R and all permutations
π : N → N .

• F is neutral, if NR
r = NR

r′ implies r ∈ F (R)⇔ r′ ∈ F (R) for all profiles R and all rules r, r′.

• F is independent, if NR
r = NR′

r implies r ∈ F (R) ⇔ r ∈ F (R′) for all profiles R, R′ and all
rules r.

• F is monotonic, if NR
r ⊆ NR′

r (together with NR
r′ = NR′

r′ for all rules r′ ̸= r) implies r ∈
F (R)⇒ r ∈ F (R′) for all profiles R, R′ and all rules r.

• F is unanimous, if F (R) ⊇ R1 ∩ · · · ∩ Rn holds for all profiles R = {R1, . . . ,Rn}.

• F is grounded, if F (R) ⊆ R1 ∪ · · · ∪ Rn holds for all profiles R = {R1, . . . ,Rn}.

All quota (including nomination and unanimity) and oligarchic (including dictatorship) rules are
unanimous, grounded, neutral, independent and monotonic. Further, the quota rules are also anony-
mous.

Preservation of properties during aggregation A key concern during aggregation is the preserva-
tion of certain properties. Agents may disagree on rules (i.e. each has different Ri) but may have
agreement at a high-level, such as whether a particular set of assumptions is admitted as an extension
under one of the semantics. In such instances, we would like the aggregation procedure to result in a
framework that reflects such agreement amongst agents.

Definition 12 Let P be a property of bipolar ABA frameworks. If ∆ ⊆ A is P in each agents’ bipo-
lar ABA framework ⟨L,Ri,A,— ⟩ (with i ∈ N), then P is preserved in the aggregated bipolar ABA
framework F = ⟨L,Ragg,A,— ⟩ if and only if ∆ is P in F .

7



Chapter 2. Background

2.4 Answer Set Programming (ASP)

In this section, we introduce notions relevant to answer set programming, which is essential to under-
standing the implementation and soundness and completeness proofs of the extension computer for
bipolar ABA semantics.

Definition 13 A term is a constant or variable symbol. An atom is an expression A(t1, . . . , tn) where
n is called the arity of A and ti for i ∈ n are terms. A literal is an atom or the (strong) negation of an
atom.

Definition 14 A disjunctive logic program Π is a set of rules of the form r = L1 ∨ · · · ∨ Lk ←
Lk+1, . . . , Ln, not Ln+1, . . . ,not Lm, where n ≥ m ≥ k ≥ 0, each Li is a literal, and:

• body(r) = {Lk+1, . . . , Ln, not Ln+1, . . . ,not Lm};

• body+(r) = {Lk+1, . . . , Ln};

• body−(r) = {Ln+1, . . . , Lm};

• head(r) = {L1, . . . , Lk}.

If k ≤ 1 then r is said to be normal or disjunction-free. If head(r) = {⊥}, then r is said to be a
constraint. The symbol not represents negation-as-failure (or default-negation).

Definition 15 A ground instance of a rule r ∈ Π is a ground rule r′ where each variable occurring in
r is substituted by an element of the Herbrand universe of Π. Gr(Π), is the set of all ground instances
of rules in Π.

The Herbrand universe is the set of all ground terms formed by using the function symbols and con-
stants in Π. We sometimes use atoms(Π) to denote all the ground instances of atoms (i.e. where each
variable in the atom has been substituted by an element of the Herbrand universe of Π) that appear
in Π.

Definition 16 Given a program Π, an interpretation I ⊆ atoms(Π) satisfies (or is a model of) Π if for
every (ground) rule r ∈ Gr(Π), I ⊨ body(r)→ I ⊨ head(r) where:

• I ⊨ body(r) iff body+(r) ⊆ I ∧ body−(r) ∩ I = ∅;

• I ⊨ head(r) iff ∃a∈head(r) a ∈ I.

Definition 17 The reduct ΠX of a program Π with respect to a set of atoms X, is defined as ΠX =
{head(r)← body+(r) | r ∈ Gr(Π), body−(r) ∩X = ∅}.
Definition 18 An answer set of a (disjunctive logic) program Π is an interpretation I ⊆ atoms(Π)
such that I ∈M(ΠI), where M(P I) are the ⊆-minimal models of ΠI .

Definition 19 A splitting set for a program P is any set of predicate symbols X such that, for every
clause r ∈ P , if there exists some predicate symbol in X in head(r), then the predicate symbols in
body(r) must be contained in X. The set X is said to split P .

The set of clauses r ∈ P such that atoms(r) ⊆ X is the bottom of P relative to X, denoted by botX(P ).
The set topX(P ) = P − botX(P ) is the top of P relative to X.

The splitting theorem (below) is a useful result that allows us to compute the answer sets of a program
iteratively by evaluating answer sets of distinguished sub-programs based on splitting sets.

Proposition 1 (Splitting Theorem) Let X be a splitting set of a program Π, and let I ⊆ atoms(Π)
be an interpretation. Then I ∈ AS(Π) iff I ∈ AS(topX(Π(J))), where J = I ∩ atoms(botX(Π)) and
J ∈ AS(botX(Π))

8



Chapter 2. Background

Programming Techniques

In chapter 6, the ASP program for computing extensions leverages several well-known techniques: the
Guess&Check method, iteration using linear orderings and saturation. Here we briefly give a general
overview of them.

The Guess&Check method The Guess&Check method (originally Generate&Test [22]) is an effec-
tive process to encode and solve problems. The idea is to define a search space by guessing candidate
solutions to a problem and then to eliminate incorrect solutions by checking the candidates. Consider
a simple problem of identifying cliques of a given undirected graph. Cliques are subsets of nodes such
that every pair of distinct nodes in the subset are connected via an edge. If we encode nodes as node(·)
and edges as edges(·, ·), we can encode the problem like so:

in(X)← not out(X), node(X); (2.1)

out(X)← not in(X), node(X); (2.2)

⊥ ← in(X), in(Y ), not edge(X,Y ), X ̸= Y ; (2.3)

Rules (2.1) and (2.2) formulate a guess over all possible subsets of nodes in the graph. The rule (2.3)
invalidates guesses if any two distinct nodes in the guess lack an edge between them.

Iteration using linear orderings Sometimes, it may be necessary to iterate over a set of objects in
order to verify that all members of the set meet a certain condition or to accumulate some value over
the members. For instance, let us consider a simple problem. Suppose we are trying to compute the
price of items in a shopping basket, encoding each item and its price using a fact item(·, ·):

item(apple, 5); item(orange, 3); item(watermelon, 8);

In order to sum the prices of an arbitrary number of items, we can define a linear ordering over these
items like so:

lt(X,Y )← item(X,P1), item(Y, P2), X < Y ;

nsucc(X,Z)← lt(X,Y ), lt(Y, Z);

succ(X,Y )← lt(X,Y ), not nsucc(X,Y );

ninf(X)← lt(Y,X);

inf(X)← not ninf(X), item(X,P );

nsup(X)← lt(X,Y );

sup(X)← not nsup(X), item(X,P );

Intuitively, the program is explicitly encoding the ordering relationships (with respect to the alphabet-
ical ordering of the item name) between items, such as less-than, successor, infimum and supremum.
We can then use these encodings to iterate over the entire set of items:

accumulatedCost(X,C)← inf(X), item(X,C);

accumulatedCost(Y,C)←accumulatedCost(X,C1), succ(X,Y ),

item(Y,C2), C = C1 + C2;

totalCost(C)← accumulatedCost(Z,C), sup(Z);

To see how this works, we can derive some ground atoms to obtain: inf(apple), succ(apple, orange),
succ(orange,watermelon) and sup(watermelon). Then we derive accumulatedCost(apple, 5),
accumulatedCost(orange, 8), accumulatedCost(watermelon,16) and then finally totalCost(16).
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Saturation The saturation technique is a method to check whether all guesses satisfy a certain prop-
erty. The general idea is to formulate a guess using rules with disjunctive heads, and then to ‘saturate’
the guess to a specially designated answer set Msat in the event that the property holds. If the property
does not hold for a particular guess, another, more minimal answer set is obtained.

A classic example is 3-uncolourability, the problem of determining if there are no possible assignments
of three colours to a graph such that no two adjacent nodes are assigned the same colour. In the below
scenario, we encode nodes, edges and the colours thereof using the predicates node(·), edge(·, ·), r(·),
g(·) and b(·) (red, green and blue).

Π = { r(X) ∨ g(X) ∨ b(X)← node(X); (2.4)

non col← r(X), r(Y ), edge(X,Y ); (2.5)

non col← g(X), g(Y ), edge(X,Y ); (2.6)

non col← b(X), b(Y ), edge(X,Y ); (2.7)

r(X)← non col, node(X); (2.8)

g(X)← non col, node(X); (2.9)

b(X)← non col, node(X); } (2.10)

The first rule (2.4) defines a search space over all possible assignments of colours to nodes. Consider
any interpretation of this program I ⊆ atoms(Π) must satisfy I ∈ M(ΠI). Any minimal model of
ΠI must contain exactly one assignment of a colour to each node (as the head of (2.4) is minimally
satisfied when exactly one of the atoms in the disjunction is in the interpretation). The rules (2.5) -
(2.7) derive non col when the current assignment violates the adjacency requirement. In this event,
the saturation rules (2.8) - (2.10) saturate the current guess by assigning every colour to each node
(and this becomes Msat). If every guess is non-colourable, it gets saturated by these rules, and so the
minimal model of this program would be this saturated model. However, if at least one of the guesses
is colourable, this means there exists a model where non col is not derived, and thus the guess is not
saturated but still satisfies the program. This guess is a subset of Msat that satisfies the program, and
so rules out Msat as an answer set in this case. Therefore, if the answer set of this program is Msat, it
indicates that the graph is 3-uncolourable. If the answer set of this program is not Msat, it indicates
that there exists an assignment of colours that does not violate the adjacency constraint.

Now suppose we add a final constraint⊥ ← not non col to this program. This enforces that any answer
set of Π must contain non col. Thus if a single guess is colourable, no answer sets are returned (Msat

is no longer minimal and the colourable assignment does not contain non col). This is particularly
useful in conjunction with the Guess&Check method. Suppose we formulated a guess over a search
space. The saturation method lets us check a guess by performing another set of guesses over another
search space. The checking part comes into play by ruling out answer sets as in the final constraint.
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Chapter 3

Related Work

In this section, we examine the existing body of research and tools concerning preservation results,
debate systems, and computational methods for computing extensions in argumentation semantics.

3.1 Preservation Results

Graph Aggregation (2017) In [23], Endriss and Grandi introduce and explore graph aggregation,
and how different procedures affect collective rationality. At a high-level, graph aggregation is the
process of producing a collective graph that constitutes a balance between the several input graphs
that are specified by several different agents. Input graphs contain the same sets of vertices V , but vary
according to the directed edges between such vertices that individual agents specify. Here, collective
rationality refers to the ability of an aggregation procedure F to preserve a specific property of interest
P after aggregation, given that it held before. In the context of this project, this paper is highly
pertinent as it presents broad results that can be readily applied to the context of argumentation. In
our bipolar ABA setting, the task of combining attack/support relations and arguments can be viewed
as a specific case of graph aggregation. Hence, the outcomes of this paper are directly applicable to
our setting. Specifically, bipolar ABA aggregation can be understood as a form of graph aggregation: if
we view ⟨L,R1,A,— ⟩, . . . , ⟨L,Rn,A,— ⟩ as input graphs with common vertices A but distinct directed
edges Ri, with the resulting output graph as ⟨L,Ragg,A,— ⟩, then the abstractions presented in this
paper become significantly more tangible.

The main results of this paper are centred around proving that the collective rationality of a prop-
erty holds for different aggregation procedures. For these results to be universally applicable, they
are stated according to classes of properties (that are characterised by meta-properties such as im-
plicativeness) and classes of aggregation procedures (specified by axioms such as neutrality). One
result that is particularly useful is the following (where unanimous, grounded, IIE, (NR)-neutral are
the aforementioned axioms that describe any given F , and implicative, disjunctive are meta-properties
of P ):

Theorem 18 Let P be a graph property that is implicative and disjunctive. Then, for |V | ≥ 3, any
unanimous, grounded, IIE, and (NR-)neutral aggregation rule F that is collectively rational with re-
spect to P must be (NR-)dictatorial.

This is quite a strong result. If we find any property of a graph that has both these ‘implicative’ and
‘disjunctive’ meta-properties, then it can only be preserved under a dictatorial aggregation procedure.

Preservation of Semantic Properties during the Aggregation of Abstract Argumentation Frame-
works (2017) In [24], Chen and Endriss defined aggregation procedures for debates represented
as abstract argumentation (AA) [2] frameworks, and then studied the under what conditions partic-
ular semantic properties agreed by the parties were preserved under aggregation. This paper directly
uses several results in [23]. In effect, [23] is a paper with universal results for aggregation of edges
in arbitrary graphs, and this paper is a realisation of those results in the context of AA aggregation.
An abstract argumentation (AA) framework is a pair ⟨Args,⇀⟩, with a set Args of arguments and a
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Preservation results

∗ Let P be the property of argument acceptability under either the grounded, the stable, the preferred, or the complete
semantics. For |Arg| ≥ 4, any unanimous, grounded, neutral and independent aggregation rule F that preserves P must
be a dictatorship.

∗ Every aggregation rule F that is grounded preserves conflict-freeness.

∗ For |Arg| ≥ 4, the only unanimous, grounded, anonymous, neutral, independent, and monotonic aggregation rule F
that preserves admissibility is the nomination rule.

∗ For |Arg| ≥ 5, any unanimous, grounded, neutral, and independent aggregation rule F that preserves grounded
extensions must be a dictatorship.

∗ The nomination rule preserves stable extensions.

∗ Let k ≥ n and let P be an AF -property that is k-exclusive. Then under any neutral and independent aggregation rule
F that preserves P at least one agent must have veto powers.

∗ If |Arg| ≥ n, then under any neutral and independent aggregation rule F that preserves nonemptiness of the grounded
extension at least one agent must have veto powers.

∗ If |Arg| ≥ n, then under any neutral and independent aggregation rule F that preserves acyclicity at least one agent
must have veto powers.

∗ For |Arg| ≥ 4, any unanimous, grounded, neutral, and independent aggregation rule F that preserves coherence must
be a dictatorship.

Table 3.1: Preservation results for AA aggregation

binary attack relation ⇀ on Args. For our purposes, we may view a given AA framework ⟨Args,⇀⟩
as a special instance of bipolar ABA framework F = ⟨L,R,A,— ⟩ where: L = Args∪{αc : α ∈ Args};
R = {βc ← α : (α, β) ∈ ⇀}; A = Args; ᾱ = αc ∀α ∈ A; and therefore, the same definitions
for the relationships, properties, and semantics apply as in 2.1. Note that under this instance, every
βc ← α ∈ R corresponds to the (bipolar ABA) relation α attacks β, and each assumption α ∈ A is a
primitive argument (e.g. ‘Cars are harmful — they should be banned’).

Similar to definition 2.3, judgement aggregation procedures can be defined in the context of AA
frameworks, providing a way to aggregate n input AA frameworks to produce a single output AA
framework. In this context, the judgement aggregation procedure is performed over the attacks of the
input frameworks, with the assumption that the arguments Arg are the same for each agent. Using
the bipolar ABA equivalent, the aggregation procedures are defined in the same way.

The main contribution of this paper is the study of the preservation (as defined in definition 2.3) of
various semantic properties under different aggregation rules. Table 3.1 outlines the preservation
results in [24]. Note for concepts such as the grounded extension, k-exclusivity, acceptability etc. refer
to [24] or chapter 4 (we omit explanation here for conciseness). The study in this paper provides a
valuable foundation for further study of preservation results for alternative frameworks. In particular,
the techniques developed in the proofs of the theorems can also be used to prove other theorems
relevant to bipolar ABA aggregation procedures. Further, the meta-properties and axioms presented
are a useful tool to reason about properties and aggregation rules (indeed this paper is where the
definitions in paragraph 2.3 originated).

Aggregating Bipolar Opinions (2021) Lauren et al. [13] introduce novel methods to aggregate
opinions expressed as bipolar argumentation (BA) [18] frameworks. A bipolar argumentation (BA)
framework is a tuple (Args,⇝,⇒), where Args is a set of arguments,⇝ is a binary attack relation on
Args, and⇒ is a binary support relation on Args. The support relation is a relation that captures the
notion of one argument supporting another. For instance, if an argument A strengthens the premise
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of another argument B, then this relationship can be expressed as A⇒ B.

The aggregation of BA frameworks is non-trivial due to the possibility of agents having different
interpretations of support. For instance, agents may believe in the notion of deductive support (where
given a ⇒ b, b must be accepted if a is accepted), necessary support (where given a ⇒ b, a must be
accepted if b is accepted), or argument coalitions [25]. Each of these interpretations results in different
inter-plays between arguments, and, in general, what arguments are accepted. Intuitively, this is the
due to the introduction of new types of derived attacks (e.g. see supported, indirect defeats in [18]),
which naturally affect the set of winning arguments. When different agents express their opinions
with different interpretations of support, aggregation is no longer straightforward. The result of any
aggregation procedure over such BA frameworks would be invalid, as the same support relation across
each framework could have a different meaning.

To address this issue, the central thesis of [13] was to use bipolar ABA frameworks (introduced in
Čyras et al. [12]) to capture agents’ BA frameworks with different notions of support into bipolar ABA
frameworks. Aggregation procedures could then be defined over these bipolar ABA frameworks in
order to produce a collective framework that not only accounts for each agent’s opinion but also the
different interpretations of support across agents.

The majority of [13] is dedicated to the study of the preservation of certain properties during the
aggregation of bipolar ABA frameworks, which are presented as the preservation results. In this con-
text, a preservation result is a theorem that states under what conditions a given property is preserved,
where the properties under consideration are broadly equivalent to those outlined in Table 3.1. The
preservation results are of importance to this paper as they evaluate the consequences of using the
proposed aggregation procedure. However, some of the proofs for these results have inconsistencies.
In some cases, counter-examples can be found that invalidate the theorem statement. In other cases,
the theorem is correct, but the corresponding proof is incorrect.

Discussion: The preceding works have highlighted the lack of study around property preservation
during the aggregation of bipolar ABA frameworks. While a study exists for AA aggregation, the only
study in the context of bipolar ABA frameworks has inconsistencies. Therefore, there is an opportu-
nity to conduct a full study on bipolar ABA preservation. Evidently, we can build upon some of the
groundwork in [13], but further results from [23] and methods of proof in [24] (i.e. the two other
papers discussed in this section) will have to be leveraged to complete the study.

3.2 Debate Systems

In this section, we briefly explore the current state of systems or tools that improve debate. In doing
so, we aim to motivate the requirement for a system that uses bipolar ABA aggregation.

Kialo [26] is a leading web-based debate platform that enables users to participate in debates on user-
submitted topics. Users can open public debates on a given central thesis statement (e.g. a topic such as
“All humans should be vegan”), in which participants can asynchronously propose claims (supporting
or attacking arguments) for and against the central thesis. Claims can further be expanded with sub-
claims, forming a nested tree-like structure with the central thesis at the root. Participants can vote
on the ‘impact’ of a claim, which attempts to reflect the level of influence that a claim has on the
overall debate. The platform’s main strength lies in its ability to represent large debates (between a
practically unlimited number of users) in an intuitive interface. The debate tree serves as an effective
visualisation tool, allowing for practical comprehension of ongoing discourse.

However, there are several weaknesses to this approach. Firstly, the expressiveness of the debate rep-
resentation is poor: claims can only support or attack a parent claim but a claim cannot support or
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attack any of its ancestors. A true representation should be able to capture supporting and opposing
relationships between any two arbitrary claims, and indeed these types of relations are supported
in typical argumentation formalisms. In addition, the binary nature of claims themselves limits the
true nature of the various perspectives on the debate. While debates may appear to have only two
opposing sides, there may actually be multiple perspectives that overlap in agreement and disagree-
ment with other sides. For instance, in a (hypothetical) discussion about euthanasia, Judaism and
Christianity both view euthanasia as immoral, whereas Buddhism believes that euthanasia is morally
acceptable. Although there is a two-sided debate on the morality of euthanasia itself, the rationales
behind Judaism’s and Christianity’s shared position on the immorality of euthanasia may differ, draw-
ing upon citations from different religious texts. Kialo cannot communicate this nuance using the tree
representation. Finally, there is a lack of participation and progression in Kialo. The impact score
(ironically) does not have an impact on the debate itself, except for determining the order of claims in
the interface. There is no sense of progression, as the platform does not offer any type of conclusion
to the debate. Claims should be able to defeat other claims and consequently a ‘side’ should be able
to win because it is deemed to be strong.

Another system, Quaestio-it [27], leverages argumentation frameworks to help evaluate community
answers in a question-and-answer platform. Although not directly a debating platform, a debate
mechanism is present where users can further discuss answers to questions by proposing supporting
or attacking arguments, which are subject to vote by users. Social abstract argumentation frameworks
are used to holistically evaluate answers by taking into account related arguments and the strength
thereof. This system provides a well-designed tool for evaluating answers and, with adaptation, this
type of mechanism could be used in a system that is exclusively for debate. However, there are some
limitations, such as the lack of transparency (from the perspective of a user) in how the strength of
answers are exactly computed. Explainability is a significant contributor to whether or not a user
accepts a given answer [28], and a lack thereof may undermine the trustworthiness of the system.

There are also a class of systems such as MAgtALO [29] and D-BAS [30] that are dialogue-based,
where participants engage in structured discussions governed by a dialogue protocol. Users participate
in debates, and are presented with a fixed number of methods to express themselves (e.g. asking
for further clarification on an argument). These types of systems focus on accurately surveying and
consequently representing the opinions of participants but do not focus on decision-making. Krauthoff
et al. in [30] note that the main use case for these systems is to provide structured arguments to be
interpreted by a higher authority; for instance an elected representative. Therefore, there is no means
to evaluate or aggregate arguments in these types of systems.

Additionally, it is worth noting that there are a variety of tools that focus on solely representing argu-
ments, such as Rationale [31], Argunet [32] and OVA3 [33]. Although not facilitating debate, these
tools use different forms of argument mapping [34] to increase comprehension. The wide adoption
of these tools suggests that our debate platform could benefit from a graphical representation of the
debate, such as the representation discussed in paragraph 2.1.

In summary, although there exist many systems related to debate, there are none that support real-
time collaborative debate. Existing systems are asynchronous, express the current state of the debate
poorly and lack a means of progression. There are systems that leverage argumentation to overcome
some of these issues, but they are not explicitly platforms that support debate. Dialogue-based systems
are suited to producing accurate debate representations but also lack the means to progress the debate
through decision-making procedures such as the aggregation of votes and do not provide a conclusion
or outcome to the debate, in the form of determining winning arguments. The majority of systems
discussed feature a graphical representation of the debate, which suggests this is a required feature of
any effective platform.
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3.3 Methods for Computing Extensions

In the implementation of a debate platform that leverages argumentation, there should be a feature
that displays the extensions for each of the semantics of a given framework. Indeed the resulting
extensions can be used as a form of outcome of the debate, communicating what sets of arguments are
considered acceptable in the current state. However, it is not a straightforward task to automatically
compute these extensions, as the possible subsets of arguments form a large search space of which a
significant number of checks need to be performed in order to rule out invalid extensions. Owing to
the novelty of bipolar ABA, there is currently no such method of computing bipolar ABA extensions
for each of the semantics, so a new program would have to be developed. However, there are a few
existing systems that compute extensions for other types of argumentation frameworks:

In [35], Lehtonen et al. use answer set programming to encode and compute the extensions of
assumption-based argumentation (ABA) [4] frameworks. In general, a Guess&Check approach was
used, and the entire program was arranged into modules, where each module would rule out invalid
extensions according to the desired semantics or shared properties of semantics (as many overlap such
as admissibility). These modules were then combined in an iterative manner to compute the ABA ex-
tensions for each of the semantics. Notably, the system uses asprin [36], a framework for handling
preferences among the stable models of a logic program in order to rule out admissible extensions
that are not subset-maximal when computing the preferred extension. Such a framework could be
used in an implementation for bipolar ABA, but there is a significant issue with this approach. Should
this program be implemented, it would have to be evaluated via a soundness and completeness proof,
which would involve formally reasoning about the structure of the program. However, the use of
the aspirin framework obscures a significant amount of underlying work that goes into enforcing the
preferences defined using the framework. As a result, it would be difficult to develop a full soundness
and completeness proof without full transparency. For the same reason, any syntactic sugar, such as
those available in clingo [37] (which is likely to be the ASP system of choice), should be avoided in the
bipolar ABA implementation. From a more positive standpoint, the general approach to the problem,
by using Guess&Check and separating the program into modules, can be used in our implementation.

Another system, ASPARTIX [38], implements a suite of answer set programs (split into modules as
in the prior system) to find extensions for several formalisms, including abstract argumentation and
bipolar argumentation frameworks. In particular, for bipolar argumentation semantics, Guess&Check,
linear orderings over arguments, and the saturation technique (as each discussed in section 2.4) are all
used to compute extensions. The use of linear orderings and saturation technique, in computing the
preferred extension, does not leverage any external dependencies or syntactic sugar. Therefore, these
techniques can be suitably adopted for a bipolar ABA implementation. Additionally, there are several
associated works that provide soundness and completeness proofs for ASPARTIX such as [39] and
[40] which can be used to inform our own proofs. In particular, the use of the splitting theorem (see
Splitting Theorem 1) can be used to iteratively reason about the modules of the answer set program.
In this way, soundness and completeness proofs can be developed for specific common properties,
such as closedness and conflict-freeness in bipolar ABA, and thereafter the results can be re-used to
further prove other properties.

One last system, Dung-O-Matic [41], implements a program to compute extensions for abstract argu-
mentation semantics using Java. This imperative approach, although potentially allowing for simpler
integration into a web app if Java were to be used in the backend, is overly verbose - this implemen-
tation uses precisely 4275 lines of code. Therefore, this suggests that it would not only be difficult to
take an imperative approach, but it is also likely that the corresponding soundness and completeness
proof would be hard to produce, owing to the length of the program and the lack of accessible formal
methods for proving programs written in Java.
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Preservation Results

In this chapter, we present one of the main contributions of this project: preservation results of prop-
erties during bipolar ABA aggregation. As these results are based, in part, on the results in [13], we
present the theorems from [13] in Table 4.1 in order to indicate (with colours) those that are valid,
invalid, valid with inconsistencies (in proof) and novel. For each theorem with inconsistencies, we
highlight them and provide corrections. In some cases, the existing theorem is entirely incorrect, and
so we present novel theorems (and proofs) that represent the true preservation conditions. The re-
sults are presented in the order they appear in [13] and are also grouped based on which section they
appear in the paper (however, sometimes the same inconsistency spans multiple sections and this is
not possible).

4.1 Conflict-freeness & Closedness

This section concerns the preservation results that are related to the properties of conflict-freeness and
closedness. In the original paper, there are two related results.

Theorem 4.1. Every quota rule and oligarchic rule preserves conflict-freeness.

The theorem statement here is incorrect in itself (so we do not provide the existing proof). We provide
a counter-example:

β̄ ← δ1
δ1 ← δ2

δ1 ← δ2
δ2 ← α

δ2 ← α
β̄ ← δ1

β̄ ← δ1
δ1 ← δ2
δ2 ← α

R1 R2 R3 Ragg

COUNTER-EXAMPLE. Assume there exists three agents with opinions expressed as Fi = ⟨L,Ri,A,— ⟩
for i ∈ {1, 2, 3}, with R1 = {β̄ ← δ1, δ1 ← δ2}, R2 = {δ1 ← δ2, δ2 ← α}, R3 = {δ2 ← α, β̄ ← δ1}.
Then by the quota rule with q = 2 (strict majority), Ragg = {β̄ ← δ1, δ1 ← δ2, δ2 ← α}, thus the
extension ∆ = {α, β} is conflict-free in each Fi, but is not conflict-free in F .

Theorem 4.2. Every quota rule and oligarchic rule preserves closedness.

PROOF. Assume that ∆ ⊆ A is closed in ⟨L,Ri,A,— ⟩ for all i ∈ N . By contradiction, assume that
∆ is not closed in F . Then ∃α ∈ ∆ and β ̸∈ ∆ such that β ∈ Cl({α}), i.e. there exists R = {β ←
γ1, . . . , γm−1 ← γm} ⊆ Ragg for m ≥ 1, {γ1, . . . , γm} ⊆ A and γm = α. By definition of quota and
oligarchic rules, there has to be at least one agent i ∈ N such that R ⊆ Ri and thus β ∈ Cl({α}) in
⟨L,Ri,A,— ⟩, thus contradicting our assumption that ∆ is closed in ⟨L,Ri,A,— ⟩ for all i ∈ N .

The highlighted section is incorrect. The set of rules R does not necessarily come from a single
agent (i.e. it does not necessarily hold that ∃i∈NR ⊆ Ri). Indeed each rule in R could appear in
the aggregate as the result of the nomination of |R| rules from |R| different agents. Take R1 = {r1},
R2 = {r2} and R3 = {r3}. Then Ragg = {r1, r2, r3} by nomination, but it is not the case that
{r1, r2, r3} ⊆ Ri for any i ∈ N . We provide a correction for this proof below:

16



Chapter 4. Preservation Results

Result Description

THEOREM 4.1. Every quota rule and oligarchic rule preserves conflict-freeness.

THEOREM 4.2. Every quota rule and oligarchic rule preserves closedness.

THEOREM† 1. If ∆ ⊆ A is closed in each agent, then conflict-freeness is preserved in ∆ by every quota and oligarchic
rule.

THEOREM† 2. Let E be the size of the largest (wrt cardinality) minimally (wrt to set inclusion) non-empty conflicting
subset(s) of ∪i∈NRi. Then every quota rule with q > n− n

E preserves conflict-freeness.

THEOREM 4.3. For |A| ≥ 4, nomination is the only quota rule that preserves admissibility.

THEOREM 4.4. For |A| ≤ 3, every quota rule and oligarchic rule preserves admissibility.

THEOREM† 3. For |A| ≤ 2, every quota rule and oligarchic rule preserves admissibility.

THEOREM† 4. For |A| ≥ 3, nomination is the only quota rule that preserves admissibility.

THEOREM 4.5. Nomination is the only quota rule that preserves set-stable extensions.

LEMMA 1. Let a Bipolar ABA framework property P be implicative in ⟨L,Ri,A,— ⟩, for each i ∈ N . Then,
unanimity preserves P .

LEMMA 2. Let a Bipolar ABA framework property P be implicative and disjunctive in ⟨L,Ri,A,— ⟩, for each
i ∈ N . Then, the only Bipolar ABA aggregation rule that preserves P is dictatorship.

LEMMA†2. Suppose P is implicative and disjunctive in ⟨L, ,A,— ⟩ and F is one of the bipolar ABA aggregation
rules under consideration (dictatorship, oligarchy, quota, unanimity) where F (⟨L,R1,A,— ⟩,
. . . , ⟨L,Rn,A,— ⟩) = ⟨L,Ragg,A,— ⟩. Then F preserves P iff F is a dictatorship.

THEOREM 4.6. For |A| ≥ 4, the only bipolar ABA aggregation rule that preserves the acceptability of an assumption
under preferred, complete, set-stable, well-founded, or ideal semantics is dictatorship.

THEOREM 4.7. For |A| = 3, majority, unanimity, and oligarchic rules preserve assumption acceptability under pre-
ferred, complete, set-stable, well-founded, and ideal semantics.

THEOREM† 5. For |A| ≥ 3, the only bipolar ABA aggregation rule that preserves acceptability of an assumption
under preferred, complete, set-stable, well-founded, or ideal semantics is dictatorship.

THEOREM 4.8. For |A| ≤ 2, every quota and oligarchic rule preserves the acceptability of an assumption under
preferred, complete, set-stable, well-founded, and ideal semantics.

THEOREM 4.9. For |A| ≥ 5, the only bipolar ABA aggregation rule that preserves preferred, complete, well-founded,
and ideal semantics is dictatorship.

THEOREM† 6. For |A| ≥ 3, no oligarchic (except dictatorship) or unanimous rule preserves the preferred, complete,
well-founded, and ideal semantics.

THEOREM† 7. For |A| ≥ 5, no quota rule with q > n
2

preserves preferred or set-stable extensions.

THEOREM 4.10. For |A| = 3 and |A| = 4, quota and oligarchic rules do not preserve preferred, complete, well-founded,
and ideal semantics.

THEOREM 4.11. For |A| ≤ 2, every quota and oligarchic rule preserves preferred, complete, well-founded, and ideal
semantics.

THEOREM 4.12. For |A| ≥ N , at least one agent must have veto power to preserve the non-emptiness of the well-
founded extension.

COLLARY 1. For |A| ≥ N , at least one agent must have veto power to preserve acyclicity.

THEOREM 4.13. For |A| ≥ 4, the only aggregation rule preserving coherence is dictatorship.

THEOREM 4.14. For |A| = 2 or |A| = 3, the unanimity rule is the only quota rule that preserves coherence.

THEOREM 4.15. For |A| = 1, every quota rule and oligarchic rule preserve coherence.

Table 4.1: Preservation results
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PROOF. Assume that ∆ ⊆ A is closed in ⟨L,Ri,A,— ⟩ for all i ∈ N . By contradiction, assume that ∆ is
not closed in F . Then ∃β ̸∈ ∆ such that β ∈ Cl(∆), i.e. there exists ∆′ ⊢R β where ∆′ ⊆ ∆, R ⊆ R.
Without loss of generality, R = {β ← δ1, . . . , δm ← α} where α ∈ ∆′, m ≥ 0. By definition of quota
and oligarchic rules, each r ∈ R must be accepted by at least one agent. So δm ← α must appear in
some agent’s Ri. For ∆ to be closed in each agent, we must have that δm ∈ ∆. But then as δm−1 ← δm
appears in some Ri, we must have δm−1 ∈ ∆ etc. Eventually, we have that β ← δ1 appears in some
Ri, but then as β ̸∈ ∆, we have that ∆ is not closed in ⟨L,Ri,A,— ⟩, which is a contradiction. □

Novel Theorems

Although Theorem 1 no longer holds, it would still be useful to derive a result that comments on
the conditions under which conflict-freeness is preserved. This is especially important as many of
the subsequent theorems in [13] rely on the incorrect theorem statement. Theorem† 1 (below) is an
attempt to fix this issue, by first assuming closedness. The other theorems that rely on the conflict-
freeness result also assume closedness, enabling us to apply this new result. In addition, we also
present an alternate result in Theorem† 2 for quota rules that makes no assumption about closedness
(but does impose limitations on the value of the quota).

Theorem† 1 If ∆ ⊆ A is closed in each agent, then conflict-freeness is preserved in ∆ by every quota
and oligarchic rule.

PROOF. Assume ∆ ⊆ A is conflict-free in ⟨L,Ri,A,— ⟩ for all i ∈ N . By contradiction, assume that
∆ is not conflict-free in F , i.e. ∃α, β ∈ ∆. β attacks α. Then, by definition of attacks, ∃R = {ᾱ ←
γ1, . . . , γm ← β}, m ≥ 0. As closedness is preserved, we have that ∆ is closed in F . Therefore, as
β ∈ ∆, we must have that γ1, . . . , γm ⊆ ∆. If we take ᾱ← γ1, we note that it must appear in some Ri

by definition of quota and oligarchic rules. However, as both α, γ1 ∈ ∆, we have that ∆ is not conflict
free in ⟨L,Ri,A,— ⟩, thus contradicting our assumption. □

Theorem† 2 Let E ≠ 0 be the size of the largest (wrt cardinality) minimally (wrt to set inclusion)
non-empty conflicting subset(s) of ∪i∈NRi. Then every quota rule with q > n − n

E preserves conflict-
freeness.

PROOF. Take arbitrary ∆ ⊆ A that is conflict-free in ⟨L,Ri,A,— ⟩ for all i ∈ N . By contradiction,
assume that ∆ is not conflict-free in F , i.e. ∃R = {β̄ ← γ1, . . . , γm ← α}, where R ⊆ Ragg, m ≥ 0
(wlg, R is minimally conflicting). By definition of the quota rule, each r ∈ R is accepted by at least q
agents, and so it follows that there are at least |R| · q occurrences of rules in R across all the agents
in total. By the pigeonhole principle, at least one agent must have accepted at least ⌈ |R|·qn ⌉ of the total
|R| · q rules. We note that:

i. by q > n− n
E , ⌈ |R|·qn ⌉ > |R| −

|R|
E ;

ii. by |R| ≤ E , |R| − |R|E ≥ |R| − 1;

and, therefore, ⌈ |R|·qn ⌉ > |R| − 1. However, this means that ⌈ |R|·qn ⌉ ≥ |R|, i.e. some agent must have
individually accepted all of the rules in a conflicting subset, thus contradicting our assumption that ∆
is conflict-free in ⟨L,Ri,A,— ⟩. □

REMARK. In the case of E = 0, there are no conflicts, and so conflict-freeness is trivially preserved.

Intuitively, the largest minimally conflicting subset of ∪i∈NRi is the largest chain that can be formed
across ∪i∈NRi that leads to a conflict that does not include ‘irrelevant’ rules. For example, take
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R1 = {Ā← B}, R2 = {B ← C, Ē ← F} and R3 = {C ← D, F ← G}. Then {Ā← B, B ← C, C ←
D, F ← G} is conflicting but is not minimal. Both {Ā← B, B ← C, C ← D} and {Ē ← F, F ← G}
are minimally conflicting subsets (the former being the largest).

4.2 Admissibility

Theorem 4.4 [13, Section 4.3] is incorrect, and we motivate this fact with a counter-example. We first
present the original proof (as we re-use parts of it in the proof of the new theorem).

Theorem 4.4. For |A| ≤ 3, every quota and oligarchic rule preserves admissibility.

PROOF. If |A| = 1, the result holds vacuously. If |A| = 2, assume that A = {α, β} and ∆ = {α} is
admissible in ⟨L,Ri,A,— ⟩ for all i ∈ N . Then r = ᾱ ← β ̸∈ Ri for all i ∈ N , and thus r ̸∈ Ragg.
Then, every quota and oligarchic rule yields {α} as an admissible extension in F . The other cases
(∆ = {β}, ∆ = {} or ∆ = A) can be proven similarly. If |A| = 3, assume that A = {α, β, γ}. Consider
the case where ∆ = {α} is admissible in ⟨L,Ri,A,— ⟩ for all i ∈ N . By contradiction, assume that ∆ is
not admissible in F . Then, given that ∆ is conflict-free and closed in F no matter which aggregation
rule, by Theorems 4.1 and 4.2, there are R ⊆ Ragg and A ⊆ {β, γ} such that A ⊢R ᾱ in F . By quota
and oligarchic rules, there must be i ∈ N such that R ⊆ Ri; thus ∆ is not admissible for agent i:
contradiction. The other cases can be proven similarly.

The first highlighted section is incorrect as we do not consider another possibility (we discuss this
later). We also remark that the use of Theorems 4.1 and 4.2 are no longer valid, but we can use
our new Theorem† 1 to obtain the same result. The second highlighted section for the case |A| = 3
is incorrect, consider R = {ᾱ ← β, β ← γ}, then by nomination rule, we could have ᾱ ← β ∈ Ri

and β ← γ ∈ Rj , where i ̸= j. This mistake is not recoverable because we can actually find a
counter-example for the entire proof statement:

ᾱ ← β
β̄ ← α
γ ← β

ᾱ ← β
γ̄ ← α
γ ← β

ᾱ ← β
γ ← β

Rq−1 R1 Rn−q Ragg

COUNTER-EXAMPLE. Assume there exists n agents with opinions expressed as Fi = ⟨L,Ri,A,— ⟩ for
i ∈ N , with A = {α, β, γ}. Suppose q − 1 agents have rules Rq−1 = {ᾱ ← β, β̄ ← α, γ ← β}, 1 agent
has rules R1 = {ᾱ ← β, γ̄ ← α, γ ← β}, and the remaining n − q agents have RN−q = ∅. Observe
that ∆ = {α} is admissible in each ⟨L,Ri,A,— ⟩. However, by quota rule with quota q, we obtain that
Ragg = {ᾱ← β, γ ← β}, and thus ∆ is not admissible in ⟨L,Ragg,A,— ⟩.

This counter-example can easily extend to the oligarchic case too. Suppose that the agents with Rq−1
and R1 had veto powers. Then Ragg = Rq−1 ∩R1 also has that ∆ is not admissible.

Thus we present a new theorem that eliminates this counter-example. The cause for this counter-
example is that a given extension ∆ can defend a given α ∈ ∆ in different ways across the input
frameworks. Given an attacker β of α, ∆ could directly attack β, or it could also attack Cl(β) in
order to defend α. Each framework may use distinct rules to perform these two types of defence.
So although ∆ is admissible in each input framework, the rules that cause ∆ to be admissible are
not guaranteed to appear in the aggregate framework as they may not be unanimously agreed upon.
However, if we assume |A| ≤ 2, the defence of α can only occur by directly attacking its attacker, as
there is guaranteed to only be a single attacker. To formalise this, we can re-use parts of the proof
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(dropping the |A| = 3 case) presented in the original paper, but with a correction to the inconsistency
in the |A| = 2 case:

Theorem† 3 For |A| ≤ 2, every quota and oligarchic rule preserves admissibility.

PROOF. The proof is the same as in [13, Theorem 4.4] with the case |A| = 3 removed and the
following correction. If |A| = 2, we need to consider an additional case not covered in the existing
proof. Assume A = {α, β}, and ∆ = {α} is admissible in ⟨L,Ri,A,— ⟩ for all i ∈ N .

1. Then the first non-vacuous case (already covered in existing proof) is that r = ᾱ← β ̸∈ Ri.

2. The second case is that {ᾱ ← β, β̄ ← α} ⊆ Ri (∆ is admissible because it attacks β back).
Then, as quota and oligarchic rules are neutral (recall paragraph 2.3), we have that ᾱ ← β ∈
Ragg ⇔ β̄ ← α ∈ Ragg, i.e. α is always defended by ∆ = {α} whenever ᾱ ← β is included in
the aggregate.

With this correction, we can lower the bound in the following Theorem 4.3. However, we note that
there are also errors in the existing proof (unrelated to the previous error).

Theorem 4.3. For |A| ≥ 4, nomination is the only quota rule that preserves admissibility.

PROOF. Assume that ∆ ⊆ A is admissible in ⟨L,Ri,A,— ⟩ for all agents i ∈ N . By contradiction,
assume that ∆ is not admissible in F . Then ∃α ∈ ∆ that is attacked by β ∈ A \ ∆, i.e. R =
{ᾱ ← γ1, . . . , γm−1 ← γm} ⊆ Ragg, for m ≥ 1 and γm = β, and ̸ ∃γ ∈ ∆ such that γ attacks β in
F . By definition of nomination rule, R ⊆ Ri for some i ∈ N and β attacks α in the bipolar ABA
framework Fi of agent i. Then, given that ∆ is admissible in Fi, ∃γ ∈ ∆ such that γ attacks β in Fi,
i.e. ∃R′ = {β̄ ← δ1, . . . , δl−1 ← δl} ⊆ Ri, for l ≥ 1 and δl = γ. But, by definition of nomination rule,
R′ ⊂ Ragg and thus γ attacks β in F : contradiction.

The highlighted section is incorrect. In particular, it does not necessarily hold that R ⊆ Ri for some
i ∈ N , indeed R ⊆ Ragg could have been formed from the nomination of rules from more than one
agent. The rest of the proof (as it appears in [13, Theorem 4.3]) shows that for |A| ≥ 4 that the other
quota rules except for nomination do not preserve admissibility. As we are changing this assumption
to |A| ≥ 3, we have to provide an example where quota rules do not preserve admissibility for |A| ≥ 3.
To show this, we can simply re-use the counter-example that we used at the start of this section (see
4.2) to disprove the previous theorem. Therefore, we can present the correct proof below:

Theorem† 4 For |A| ≥ 3, nomination is the only quota rule that preserves admissibility.

PROOF. Assume that ∆ ⊆ A is admissible in each agent. By contradiction, assume that ∆ is not
admissible in F . As conflict-freeness and closedness are preserved, then there must be some B ⊆ A\∆
such that B attacks ∆, and ∆ does not attack B. As B attacks ∆, we have that ∃R ⊆ Ragg. R = {ᾱ←
δ1, . . . , δm ← β}, where m ≥ 1, β ∈ B. By the nomination rule, there is at least one agent where
ᾱ ← δ1 ∈ Ri. As ∆ is admissible in Fi = ⟨L,Ri,A,— ⟩, we must have some γ ∈ ∆ such that
γ attacks δ1, i.e. ∃R′ ⊆ Ri. R

′ = {δ̄1 ← γ1, . . . , γm ← γ} where m ≥ 1. Then, by the nomination rule,
we must have that R′ ⊆ Ragg. As β ∈ B and B is closed, we must have that δ1, . . . , δm ⊆ B. But then
as γ attacks δ1 and γ ∈ ∆, δ1 ∈ B, we have that ∆ attacks B, thus contradicting our assumption that
∆ does not attack B.

To complete the proof, we need to show that for |A| ≥ 3, other quota rules except for nomination
do not preserve admissibility. Then, consider the counter-example at the start of this section, where
admissibility is not preserved for an arbitrary quota rule with q > 1. □
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4.3 Impossibility Results for Implicative & Disjunctive Properties

Several theorems (4.6, 4.9, 4.13) in [13] rely on an impossibility result proved in Lemma 2 below.
However, the way Lemma 2 is applied in the proofs in the aforementioned theorems is incorrect. Each
theorem misapplies Lemma 2 in the same way, so it is sufficient that we reason about one of them. We
state relevant definitions and theorems below for reference.

Definition 7 (Implicative Properties). A Bipolar ABA framework property P is implicative in ⟨L,R,A,— ⟩
iff there exists three rules r1, r2, r3 ̸∈ R such that P holds in ⟨L,Ragg,A,— ⟩ for Ragg = R ∪ S, for all
S ⊆ {r1, r2, r3}, except for S = {r1, r2}.

Definition 8 (Disjunctive Properties). A Bipolar ABA framework property P is disjunctive in ⟨L,R,A,— ⟩
iff there exists two rules r1, r2 ̸∈ R such that P holds in ⟨L,Ragg,A,— ⟩ for Ragg = R ∪ S, for all
S ⊆ {r1, r2}, except for S = {}.

Lemma 1. Let a Bipolar ABA framework property P be implicative in ⟨L,Ri,A,— ⟩, for each i ∈ N .
Then, unanimity preserves P .

Lemma 2. Let a Bipolar ABA framework property P be implicative and disjunctive in ⟨L,Ri,A,— ⟩,
for each i ∈ N . Then, the only Bipolar ABA aggregation rule that preserves P is dictatorship.

Theorem 4.6. For |A| ≥ 4, the only Bipolar ABA aggregation rule that preserves the acceptability of
an assumption under preferred, complete, set-stable, well-founded, or ideal semantics is dictatorship.

(INCORRECT) PROOF. Let P be the acceptability of an assumption under preferred, complete, set-
stable, well-founded, or ideal semantics. We need to prove that for |A| ≥ 4, P is implicative and
disjunctive. Then, by Lemma 2, the theorem holds. The proof has the same structure for each of the
five semantics. Consider a set of at least four assumptions A = {A,B,C,D, . . . }. (proof proceeds to
demonstrate that P is implicative and disjunctive using two specific scenarios).

Issue with Existing Proof

The proof for Theorem 4.6 is incorrect. To apply Lemma 2, we must show that P is implicative and
disjunctive in ⟨L,Ri,A,— ⟩ for each i ∈ N . Instead, the proof only shows that P is implicative in
some specific ⟨L,Rj ,A,— ⟩, and also that P is disjunctive in some specific ⟨L,Rk,A,— ⟩, where it is
not necessarily the case that j, k ∈ N .

We can attempt to fix the proof as is by trying to show for |A| ≥ 4 that P is implicative and disjunctive
in ⟨L,Ri,A,— ⟩ for each i ∈ N . However, we would quickly see that we can find a ⟨L,Ri,A,— ⟩ where
implicativeness does not hold:

COUNTER-EXAMPLE. Take some ⟨L,Ri,A,— ⟩ with Ri = ∅. We show that P is not implicative in
⟨L,Ri,A,— ⟩. Suppose P is the acceptability of assumption A under preferred semantics. Refer
to the definition of implicativeness above: it requires three rules r1, r2, r3 ̸∈ R such that ∀S ⊆
{r1, r2, r3}. P (R∪ S)↔ S ̸= {r1, r2}.

In our scenario, R = ∅, which corresponds to P¬({r1, r2}) being the case if P is implicative. In
order for this to be true, we must have that A is not acceptable in ⟨L, {r1, r2},A,— ⟩. For A to not be
acceptable under preferred semantics, it must be attacked and not defended. Therefore, there is at
least some attack r ∈ {r1, r2} such that r = Ā← X for some X ∈ A \A.
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It must also be the case in our scenario that P ({r}). But clearly ¬P ({r}) as r is an attack on A and
there are no other rules to defend A, so A is not acceptable under preferred semantics.

Therefore, P cannot be implicative if R = ∅, thus it is not the case for all |A| ≥ 4 that P is implicative
and disjunctive in ⟨L,Ri,A,— ⟩ for each i ∈ N . □

Constructing a New Proof

So under the current circumstances, we cannot prove Theorem 4.6. However, if we slightly change
the definition of implicativeness and disjunctiveness to be more analogous to that in [23], we can fix
this issue. We notice that in [23], implicativeness and disjunctiveness are meta-properties associated
with a fixed set of vertices (not edges!). In our context, this would correspond to P being implica-
tive/disjunctive in the context of some assumptions A, and not any particular R in ⟨L,R,A,— ⟩:

Definition†7. P is implicative in ⟨L, ,A,— ⟩ iff there exists R and three rules r1, r2, r3 ̸∈ R based on
L such that ∀S ⊆ {r1, r2, r3}. P (⟨L,R∪ S,A,— ⟩)↔ S ≠ {r1, r2}.

Definition†8. P is disjunctive in ⟨L, ,A,— ⟩ iff there exists R and two rules r1, r2 ̸∈ R based on L
such that ∀S ⊆ {r1, r2}. P (⟨L,R∪ S,A,— ⟩)↔ S ̸= {}.

REMARK. Saying that a rule or set of rules is based on L simply means that the rule or each rule in the
set is of the form β ← α or β̄ ← α where α, β, β̄ ⊆ L.

With these new definitions, we can construct a new Lemma 2; Lemma†2 and subsequent proof.

Lemma†2. Suppose P is implicative and disjunctive in ⟨L, ,A,— ⟩ and F is one of the bipolar ABA ag-
gregation rules under consideration (dictatorship, oligarchy, quota, unanimity) where F (⟨L,R1,A,— ⟩,
. . . , ⟨L,Rn,A,— ⟩) = ⟨L,Ragg,A,— ⟩. Then F preserves P iff F is a dictatorship.

PROOF. We consider both directions:

(⇐): Let i∗ ∈ N be the dictator. Then, by assumption, P (⟨L,Ri∗ ,A,— ⟩). By definition of dictatorship,
F (⟨L,R1,A,— ⟩, . . . , ⟨L,Rn,A,— ⟩) = ⟨L,Ri∗ ,A,— ⟩. Then, P (F (⟨L,R1,A,— ⟩, . . . ,
⟨L,Rn,A,— ⟩)) as required.

(⇒): We prove the contrapositive. Suppose F is not a dictatorship. It is therefore a quota, oligarchic
or unanimity rule. We show that P is not preserved by F in all three cases:

QUOTA: Let q be the quota (where 1 ≤ q < n). As P is implicative, we know that there is R∗ (we
add ∗ to make clear that this is a distinguished R) and r1, r2, r3 where ∀S ⊆ {r1, r2, r3}. P (⟨L,R∗ ∪
S,A,— ⟩) ↔ S ̸= {r1, r2}. Consider the following distribution of rules: q − 1 agents choose Rq−1 =
R∗ ∪ {r1, r2, r3}, 1 agent chooses R1 = R∗ ∪ {r1}, 1 agent chooses R1′ = R∗ ∪ {r2}, and n − q − 1
agents choose Rn−q−1 = R∗. After aggregation, we have that Ragg = R∗ ∪ {r1, r2}. However, by
implicativeness, we conclude the ¬P (⟨L,Ragg,A,— ⟩) and so P is not preserved.

R∗
r1
r2
r3

R∗
r1

R∗

r2

R∗ R∗
r1
r2

Rq−1 R1 R1′ Rn−q−1 Ragg

OLIGARCHY: Let M ⊆ N be the oligarchs (where 1 < |M | < n). As P is disjunctive, we know
there is R∗ and r1, r2 where ∀S ⊆ {r1, r2}. P (⟨L,R∗ ∪ S,A,— ⟩) ↔ S ≠ {}. Consider the following
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distribution of rules: |M | − 1 agents choose R|M |−1 = R∗ ∪ {r1}, 1 agent chooses R1 = R∗ ∪ {r2},
and n− |M | agents choose Rn−|M | = R∗ ∪ {r1}. After aggregation, we have Ragg = R∗. However, by
disjunctiveness, we conclude that ¬P (⟨L,Ragg,A,— ⟩) and so P is not preserved.

R∗
r1

R∗

r2

R∗

r2

R∗
R|M |−1 R1 Rn−|M | Ragg

UNANIMITY: As P is disjunctive, we know there is R∗ and r1, r2 where ∀S ⊆ {r1, r2}. P (⟨L,R∗ ∪
S,A,— ⟩) ↔ S ≠ {}. Consider the following distribution of rules: n − 1 agents choose Rn−1 =
R∗∪{r1}, and 1 agent choosesR1 = R∗∪{r2}. After aggregation, we have thatRagg = R∗. However,
by disjunctiveness, we conclude that ¬P (⟨L,Ragg,A,— ⟩) and so P is not preserved.

R∗
r1

R∗

r2

R∗
Rn−1 R1 Ragg

□

This new Lemma 2† can now be applied in Theorem 4.6 (and indeed Theorems 4.9, 4.13) by showing
that P is implicative and disjunctive for |A| ≥ 4 (which is shown in the existing proof in [13]). As the
proof for Lemma 2† no longer requires Lemma 1, we can discard it completely.

4.4 Assumption Acceptability

The acceptability of an assumption α under a given semantics is the property of the existence of
an extension ∆ such that α ⊆ ∆ and ∆ is an extension under the given semantics. The existing
paper [13, Section 4.5] provides some results for the preservation of assumption acceptability during
aggregation. However, some of these results are incorrect.

Theorem 4.6 incorrectly applies a lemma in its proof (as discussed in the previous section). Theorem
4.7 is incorrect, and we can identify a simple counter-example:

Theorem 4.7. For |A| = 3, majority, unanimity, and oligarchic rules preserve assumption acceptability
under preferred, complete, set-stable, well-founded, and ideal semantics.

ᾱ ← β
β̄ ← α
γ ← β

ᾱ ← β
γ̄ ← α
γ ← β

ᾱ ← β
γ ← β

Rq−1 R1 RN−q Ragg

COUNTER-EXAMPLE. Assume there exists n agents with opinions expressed as Fi = ⟨L,Ri,A,— ⟩ for
i ∈ N , with A = {α, β, γ}. Suppose q − 1 agents have rules Rq−1 = {ᾱ ← β, β̄ ← α, γ ← β}, 1 agent
has rules R1 = {ᾱ ← β, γ̄ ← α, γ ← β}, and the remaining N − q agents have RN−q = ∅. By quota
rule with quota q we obtain that Ragg = {ᾱ← β, γ ← β}. However, observe that α is acceptable with
respect to the preferred and set-stable semantics in each ⟨L,Ri,A,— ⟩ for i ∈ N , but α is not in any
preferred or set-stable extension in ⟨L,Ragg,A,— ⟩.
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A

B

C
r1

r3

r2

Figure 4.1: Implicative case (all semantics) for Theorem† 5.

A B

C

r1

r2

(a) Preferred, set-stable and ideal semantics.

A B

C

r2 r1

(b) Complete and well-founded semantics.

Figure 4.2: Disjunctive cases for Theorem† 5.

This same example applies to the oligarchic rules, if we suppose Rq−1 and R1 are the rules of the
agents with veto powers, then Ragg = Rq−1 ∩R1.

Although this counter-example applies to acceptability with respect to the preferred and set-stable
extensions, we can actually derive an impossibility result for the preservation of acceptability with
respect to all semantics under consideration.

Theorem† 5 For |A| ≥ 3, the only bipolar ABA aggregation rule that preserves the acceptability of an
assumption under preferred, complete, set-stable, well-founded, or ideal semantics is dictatorship.

PROOF. Let P be the property that a given A ∈ A is acceptable with respect to the preferred,
complete, set-stable, well-founded, or ideal semantics. If we prove that P is implicative and disjunctive
(according to Definition† 7 and Definition† 8), then we can apply Lemma† 2 to prove that the result
holds.

To show that P is implicative consider the scenario in Figure 4.1, where R = {A← B}, r1 = C ← A,
r2 = C̄ ← B and r3 = B̄ ← A. Then P holds in ⟨L,R∪S,A,— ⟩ iff S ≠ {r1, r2} for all S ⊆ {r1, r2, r3}.
Therefore, P is implicative.

To show that P is disjunctive, first consider the scenario in Figure 4.2a, where R = {Ā ← B, C̄ ←
A, B̄ ← C}, r1 = B̄ ← A and r2 = C ← B. Then A is acceptable with respect to the preferred,
set-stable and ideal semantics in ⟨L,R ∪ S,A,— ⟩ iff S ≠ ∅ for all S ⊆ {r1, r2}. Next, consider the
scenario in Figure 4.2b, where R = {B ← A, B̄ ← C}, r1 = C ← B and r2 = C̄ ← A. Then A is
acceptable with respect to the complete and well-founded semantics in ⟨L,R ∪ S,A,— ⟩ iff S ̸= ∅ for
all S ⊆ {r1, r2}. Therefore, P is disjunctive.

Thus as P is implicative and disjunctive, the only bipolar ABA aggregation rule that preserves P is
dictatorship by Lemma† 2. □

24



Chapter 4. Preservation Results

A B

CDE

r3 r2 r1

(a) Implicative case.

A B

CDE

r1

r2

(b) Disjunctive case.

Figure 4.3: Incorrect cases in the proof of Theorem 4.9.

4.5 Preferred, Complete, Well-founded & Ideal Extensions

This section concerns the results presented in [13, Section 4.6] that are related to the preservation
of entire extensions under different semantics. Note that this is a separate notion from acceptability,
which solely asserts that a given assumption α ∈ A belongs to some semantic extension. Preserving
an entire extension amounts to ∆ ⊆ A being an extension under a given semantics, assuming it is an
extension in each input framework.

Issue with Existing Proof

Although we have corrected the definition of Lemma 2 (see section 4.3), there is still a separate issue in
the proof of Theorem 4.9. Similar to theorems 4.6 and 4.13, the proof demonstrates that for a specific
minimum number of assumptions, the property P of a given extension ∆ ⊆ A is both implicative and
disjunctive. Specifically, for Theorem 4.9 (below), P corresponds to the properties of being preferred,
complete, well-founded, or ideal.

Theorem 4.9. For |A| ≥ 5, the only Bipolar ABA aggregation rule that preserves preferred, complete,
well-founded, and ideal semantics is dictatorship.

To show that P is implicative, the existing proof uses the following scenario (see Figure 4.3a). Let
A = {A,B,C,D,E}, ∆ = {B,D,E} andR = {C̄ ← D, Ā← B, E ← D}, r1 = B̄ ← C, r2 = D̄ ← A,
and r3 = Ā ← E. Now consider Ragg = R ∪ S, with S ⊆ {r1, r2, r3}. The proof claims that when
S ̸= {r1, r2}, then ∆ is preferred, complete, well-founded and ideal, but when S = {r1, r2}, ∆ is not
preferred, complete, well-founded, or ideal (which meets the requirement for P being implicative).

However, if we consider S = {r1, r2}, we get that the preferred, complete, well-founded and ideal
extensions are actually {A,C,E} and {B,D,E}, so clearly ∆ = {B,D,E} is preferred, complete,
well-founded and ideal. Therefore, P is not implicative as we require ¬P (⟨L,R∪ {r1, r2},A,— ⟩).

To show that P is disjunctive, another scenario is given (see Figure 4.3b). Let A = {A,B,C,D,E},
∆ = {B,D,E} and R = {C̄ ← D, B̄ ← C, Ā← B, D̄ ← A, D ← E}, r1 = C̄ ← E and r2 = Ā← E.
Consider S ⊆ {r1, r2}. This time we must (at least) show that when S ≠ {}, then ∆ is preferred,
complete, well-founded and ideal, but when S = {}, then ∆ is not preferred, complete, well-founded
or ideal.

But if we consider S = {}, it is actually the case that the preferred, complete, well-founded and ideal
extensions are {A,C,E} and {B,D,E}, so clearly ∆ = {B,D,E} is preferred, complete, well-founded
and ideal. Therefore, P is not disjunctive as we require ¬P (⟨L,R,A,— ⟩).
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Figure 4.4: Disjunctive case for Theorem† 6.
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Figure 4.5: Aggregation scenario for Theorem† 7.

New Theorems

In order to fix this inconsistency, we need to find similar scenarios (similar to the incorrect Figure 4.3)
where P is implicative and disjunctive. However, this is challenging to construct, considering we need
to precisely find a framework and set of rules that satisfy the implicative and disjunctive properties.
In this case, the addition of a single support or attack relation often results in different extensions, so
P is hard to preserve over different subsets of S.

In the absence of such scenarios, we present two other counter-examples, which allow us to derive a
slightly weaker impossibility result.

Theorem† 6 For |A| ≥ 3, no oligarchic (except dictatorship) or unanimous rule preserves the pre-
ferred, complete, well-founded, and ideal semantics.

PROOF. Let P be the property of a given extension being preferred, set-stable, complete, well-founded
or ideal. Consider the aggregation scenario in Figure 4.4, where ∆ = {A,B} is preferred, set-stable,
complete, well-founded and ideal in ⟨L,R ∪ S,A,— ⟩ for all S ⊆ {r1, r2} except when S = ∅ (where,
in this case, ∆′ = {A,B,C} is the only preferred, set-stable, complete, well-founded and ideal ex-
tension). Then P is disjunctive. Now consider the oligarchic and unanimous cases in the proof of
subsubsection 4.3. Then as P is disjunctive, the same cases apply. Thus P is not preserved by any
oligarchic or unanimous rule. □

Theorem† 7 For |A| ≥ 5, no quota rule with q > n
2 preserves preferred or set-stable extensions.

PROOF. Consider the scenario in Figure 4.5, where A = {A,B,C,D,E} and the rules are distributed
as shown. Given a quota rule with quota q, q − 1 agents have rules as in Rq−1, 1 agent has rules as in
R1 and N − q agents has rules as in RN−q. As the quota is q, the rules in Rq−1 ∩ R1 appear in Ragg.
Further, as q ≥ n

2 , then n − q < q, thus the rules in Rn−q do not appear in Ragg. Now, observe that
∆ = {A,B,E} is preferred and set-stable in each input framework. However, ∆ is not preferred and
set-stable in the aggregated framework. Therefore, it is not preserved. □
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4.6 Non-emptiness of Well-founded Extensions

This section concerns the correction of results related to the preservation of the non-emptiness of
the well-founded extension. In particular, there is an issue with Lemma 3 that is used to prove the
preservation results in Theorem 4.12.

Definition 9. (k-exclusivity) Let P be a property of a bipolar ABA framework. P is k-exclusive if there
exists rules S = {r1, . . . , rk} such that if R ⊇ S then P does not hold, but if R ⊂ S then P holds.

Lemma 3. Let P be a k-exclusive property of a bipolar ABA framework. For k ≥ N , where N is the
number of agents, P is preserved only if at least one of the N agents has veto power.

For conciseness, we do not include the proof here (see [13, Theorem 4.9, Section 4.7]), but provide a
brief discussion of the issues. The proof claims that if the intersection of the agents’ rules is non-empty,
then some agents must have veto powers. Specifically, it states that if there is some M ⊆ N such that⋂

i∈M Ri ̸= ∅, then we can conclude that M have veto powers. This statement is incorrect. The
distribution of rules has no bearing on the aggregation procedure (and hence whether or not some
agents have veto powers) - the choice in aggregation procedure is completely independent of input
frameworks by construction.

Further, the proof states that if an aggregation rule preserves a k-exclusive P , then the intersection of
k sets of rules must be non-empty. It is ambiguous whether or not these rules are the agents’ rules, or
if they are just arbitrary sets of rules in Ragg.

In both cases, this statement is false. Consider the following aggregation scenario with n agents using
a quota rule Fq with q = 2, where we distribute the distinguished {r1, . . . , rk} from the k-exclusivity
definition.

r1 r2 · · ·

rn
rn+1

...
rk

R1 R2
Rn Ragg

Then P is true in each ⟨L,Ri,A,— ⟩ as Ri ⊂ {r1, . . . , rk} for each i ∈ N , and also Fq preserves P as
Ragg ⊂ {r1, . . . , rk}. Then the first interpretation of the statement is false, as R1 ∩ · · · ∩ Rn = ∅ and
the second interpretation is false, as Ragg = ∅.

By all accounts, there appear to be ambiguities and inconsistencies in the current proof, requiring that
a new proof be made.

Constructing a New Proof

To construct a new proof, we use the proof technique developed in [24, Section 4.4] for abstract
argumentation frameworks in the context of bipolar ABA. We briefly state a few concepts that are
required in the proof.

Suppose we aggregate some input frameworks ⟨L,R1,A,— ⟩, . . . , ⟨L,Rn, A,— ⟩, using
F (⟨L,R1,A,— ⟩, . . . , ⟨L,Rn,A,— ⟩). Then recall that NR

r = {i ∈ N | r ∈ Ri, Ri ∈ R}, i.e. NR
r

returns the agents who individually accepted a rule r under some input rules R = {R1, . . . ,Rn},
where R1, . . . ,Rn are the rules of the input frameworks. As an example, let R = {R1,R2,R3}
contain rules as shown below. Then NR

r1 = {1, 2}, NR
r2 = {1} and NR

r3 = {1, 3}.
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r1
r2
r3

r1

r3

R1 R2 R3

Recall that the aggregation rules under consideration are both independent and neutral (see para-
graph 2.3). Intuitively, independence says that the inclusion of a rule in the aggregate depends solely
on the agents who accept it, and, combined with neutrality, states that this dependence should be the
same across all rules. For example, consider the quota rules. The quota rules include a rule in the
aggregate if it appears in at least q agents. They are independent, as any rule with the support of at
least q agents is included in the aggregate regardless of the profile under consideration. They are also
neutral because this condition holds equally for all rules.

Therefore, if an aggregation rule F is both independent and neutral, we can describe its behaviour by
listing all the coalitions C ⊆ N for which it is the case that, whenever exactly the agents in C support
a rule r, then r must be collectively accepted. We call the set of such coalitions C ⊆ N the winning
coalitionsW ⊆ 2N . More formally,W describes F by asserting ∀R,r r ∈ F (R) iff NR

r ∈ W.

For example, for a quota rule with quota q, the winning coalitions are the subsets of agents with size
greater than or equal to q, i.e. C ⊆ N where |C| ≥ q. This fully describes the quota rule, as regardless
of the input profile these agents can force a rule to be accepted in the aggregate.

PROOF. Now, to prove the lemma, we need to show, assuming some k-exclusive property P is pre-
served by some aggregation rule F where k ≥ N , that F gives at least one of the N agents veto
power.

Firstly, recall that an agent i ∈ N has veto power if F (R) ⊆ Ri for all profiles R. A connection can be
established between the concept of winning coalitions and veto powers through the following lemma:

Lemma. If an agent is a member of all winning coalitions of F , then they must have veto powers
under F : i ∈

⋂
C∈W C ⇒ ∀RF (R) ⊆ Ri

PROOF. Assume i ∈
⋂

C∈W C. Take arbitrary R and r ∈ F (R). As r ∈ F (R), we must have that
NR

r ∈ W (i.e. NR
r is a winning coalition). As i ∈ N is a member of all winning coalitions (by

assumption), it must be the case that i ∈ NR
r . As NR

r = {i ∈ N | r ∈ Ri, Ri ∈R}, we can conclude
that r ∈ Ri. □

Thus the lemma implies that if we can show the intersection of the winning coalitions is non-empty,
we can conclude that at least one agent has veto powers.

In order to show that the intersection of the winning coalitions is non-empty, we first show in (i)
that the intersection of any k winning coalitions must be nonempty (assuming a k-exclusive property
is preserved by F ), and then in (ii) we show that this implies that the intersection of all winning
coalitions are non-empty.

(i) We need to show under the current assumptions that ∀C1,...,Ck∈W C1 ∩ · · · ∩ Ck ̸= ∅.

By contradiction, assume that there are k winning coalitions such that C1 ∩ · · · ∩Ck = ∅. Recall under
k-exclusivity there are a distinguished set of rules {r1, . . . , rk} such that P does not hold if the entire
subset of these rules is accepted (and does hold if any proper subset of them are accepted).

Consider a profile R = {R1, . . . ,Rn}, where P holds in Ri for all i ∈ N . For each j ∈ {1, . . . , k},
assign rule rj to exactly the agents in coalition Cj . This does not violate the k-exclusivity property, as
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no agent is a member of all k coalitions by assumption, and so the entire set {r1, . . . , rk} would not be
present in any single Ri.

However, as each ri is supported by a winning coalition, they must appear in the aggregate set of rules,
F (R). But as each of the distinguished rules appears in the aggregate, we can conclude ¬P (F (R))
due to the k-exclusivity property.

This is a contradiction, as we assumed that F preserves P . □

(ii) Assume all l winning coalitions inW are arbitrarily labelled C(1), . . . , C(l). We need to show that
∀C1,...,Ck∈W [C1∩· · ·∩Ck ̸= ∅]⇒ C(1)∩· · ·∩C(l) ̸= ∅, i.e. that the non-emptiness of the intersection of
any k coalitions implies that the intersection of all coalitions is non-empty. By contraposition, assume
C(1) ∩ · · · ∩ C(l) = ∅. We need to show ∃C1,...,Ck∈WC1 ∩ · · · ∩ Ck = ∅.

We can find such a set of coalitionsW ′ ⊆ W as follows. Start withW ′ = ∅. Then for each subsequent
j ∈ 1, . . . , l in turn, add C(j) toW ′ if and only if (C(j) ∩

⋂
C∈W ′ C) ⊂ (

⋂
C∈W ′ C). Intuitively, we only

add coalition C(j) to W ′ when it strictly shrinks the current intersection of all coalitions in W ′. As
there are n agents, we end up with, at most, n coalitions in W ′. Thus we have

⋂
C∈W ′ C = ∅ where

|W ′| ≤ n. As we assumed k ≥ n, then we can add arbitrary coalitions to W ′ until |W ′| = k, where it
still remains that

⋂
C∈W ′ C = ∅. □

As we have shown:

(i) ∀C1,...,Ck∈W C1 ∩ · · · ∩ Ck ̸= ∅

(ii) ∀C1,...,Ck∈W [C1 ∩ · · · ∩ Ck ̸= ∅]⇒ C(1) ∩ · · · ∩ C(l) ̸= ∅

It follows from (i) and (ii) that C(1) ∩ · · · ∩ C(l) ̸= ∅. Therefore, as the intersection of the winning
coalitions is non-empty, there exists at least one agent i ∈ N that is a member of every winning
coalition: i ∈

⋂
C∈W C. We can then apply the lemma to this result to obtain ∀RF (R) ⊆ Ri, i.e. this

agent must have veto powers. □
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ArgSolve

This chapter introduces ArgSolve: a real-time, collaborative debate platform that leverages compu-
tational argumentation. We begin by discussing the requirements of the debate platform. Then, we
provide a detailed overview of the final implementation of ArgSolve, highlighting the design choices
made during its development.

5.1 Requirements

Today, discourse typically takes place online on web-based platforms such as forums and social media
sites. These platforms are effective at sharing information at scale, but are well-known to suffer
from several shortcomings in the quality of such debates [14][15][16][17]. In [14], Iandoli et al.
characterise these platforms as conversation-centric tools; classes of platforms that primarily focus on
knowledge sharing. Any platform that improves discourse should be more effective at facilitating
debates than conversation-centric tools; otherwise, its purpose becomes redundant. Therefore, to
inform the design of our debate platform, it is necessary to establish conversation-centric debate as a
benchmark for which we can make improvements.

A debate is a discussion amongst a group of participants with the objective of exchanging arguments
in order to arrive at a better understanding of the topic at hand. This is mainly achieved by clarify-
ing different perspectives and identifying strengths and weaknesses in arguments. Debates occur in
various contexts, sometimes in formal settings, but more often in such conversation-centric settings
with limited structure. The lack of structure in this type of debate, while allowing for dynamic and
free-flowing conversation, often compromises the achievement of the debate’s objective.

Firstly, it is difficult for participants to identify the state of conversation-centric debate due to the lack
of structure. During any debate, participants must effectively record the arguments made and the re-
lationships between them in order to properly comprehend and evaluate arguments. In conversation-
centric settings, the debate representation is generally text-based, and arguments are presented in
discrete comments. Often, related comments are spatially scattered, making it hard to follow the
points made during the debate. When a specific argument is presented, it is typically followed by a
dedicated exchange of arguments based on the newly proposed argument. As the exchange unfolds,
it can branch into sub-exchanges that address even further aspects of the argument. This branching
is naturally recursive, adding further layers of complexity. On some platforms, comments cannot be
nested, making it extremely hard to follow these types of exchanges. Where nested comments are
supported, they provide a mere indication of some relation between them, but fall short of clarifying
the nature of this relation, such as whether the comments support or attack one another. Moreover,
a comment can only be associated directly with a single parent, preventing it from being related to
multiple comments. Overall, the ineffectiveness of representing debates can lead to multiple issues,
such as repetition of arguments, inability to generate counter-arguments, and the poor expressiveness
of different perspectives and the strengths and weaknesses of arguments. Conversation-centric debate
could benefit from a better debate representation and the ability to summarise the debate such as
identifying arguments that are on the same side or are considered strong.

Secondly, there is no objective mechanism for participants to agree upon the state of the debate.
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Assuming that the debate is well-represented, the relationship between arguments and the assessment
thereof may not necessarily be agreed upon between arguments. This is a non-issue if we simply want
to survey the opinions of participants. However, if we want to achieve any actionable outcome from
a debate, such as in decision-making, we would need a method to compromise between the diverse
views of the participants. Conversation-centric platforms do not have the means for this. Although
an informal voting process can take place via a poll, it is often regarding the initial proposition (i.e.
the topic of the debate). This approach is too coarse-grained: participants may find themselves in
agreement with the initial proposition, but hold contrasting opinions on the finer points, obscuring
the range of perspectives and the underlying rationale driving their agreement.

In summary, for a debate system to be considered an improvement over conversation-centric debate,
it needs to address two key areas:

(i) The lack of clarity in the current state of the debate, by potentially making the arguments and
relationships between them more clear and providing ways to summarise the state.

(ii) The lack of an objective method for representing the opinions of participants in the current state
of the debate.

5.2 Design

In this section, we highlight some design choices based on the issues set out in the requirements and
the discussion in the related work section. Notably, we justify how the use of bipolar ABA in the debate
platform is a naturally suited application of the formalism.

Representing the debate Argumentation frameworks can naturally be used to represent the cur-
rent state of the debate. The corresponding framework, when depicted graphically such as in para-
graph 2.1, can be considered a form of argument map. Argument maps are typically used to improve
debate comprehension in other debate systems, as discussed in section 3.2. They can persistently
present the arguments made and the relationships between them, aiding the generation of new argu-
ments and expressing the strengths and weaknesses of existing arguments.

There are several types of argumentation frameworks to consider. In general, the types of argumenta-
tion framework vary according to the underlying dialectical structure expressed. For instance, abstract
argumentation (AA) frameworks [2] are a relatively high-level representation of a debate using only
two components: arguments and attacks. On the other end of the spectrum, assumption-based argu-
mentation (ABA) frameworks [4] use rules, assumptions, contraries and deductions to express argu-
ments. In principle, it may seem attractive to use lower-level building blocks such as those in ABA to
represent participant arguments, allowing them to express their arguments with more internal struc-
ture. From a computational standpoint, there is also the added opportunity to exploit overlappings
between arguments (via assumptions) in order to improve performance when computing extensions
[42]. However, this comes at a cost of usability. As arguments are typically stated with implicit
premises (see enthymemes [43]), lower-level argumentation formalisms may encourage participants
to state them explicitly. Although this could increase clarity, in the sense that participants can identify
the structure of arguments with more precision, debates often occur in the context of shared knowl-
edge between participants, and the lack of explicitness is usually not an issue. If an implicit premise is
not widely accepted, higher-level formalisms can still enable the generation of another argument that
simply attacks the acceptance of the implicit premise, allowing clarification when needed. The abil-
ity to elaborate these premises with lower-level components is not always worth the expressiveness.
This could impede the debate in a real-time setting, and can also cause the resulting representation
to become overwhelming as the debate progresses. We argue that bipolar argumentation (BA) [18]
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frameworks (as summarised in paragraph 3.1) are well suited for our debate system, providing extra
expressiveness through the addition of the support relation [3]. BA frameworks do not compromise
on conciseness, representing a simple extension to AA frameworks.

Aggregating participant opinions If participants disagree on the current state of the debate, we can
use judgement aggregation procedures (see definition 2.2) such as quota or oligarchic rules in order to
achieve consensus. Specifically, participants can give judgements on the support and attack relations
between arguments. Arguments cannot be evaluated in isolation; they can only be evaluated in the
context of other arguments. The strength or weakness of an argument depends on how well it stands
up to counter-arguments and/or the strength of its supporting arguments. Therefore, aggregating
the relationships between arguments faithfully reflects the participants’ view of the arguments and
hence the debate as a whole. However, one issue is that participants may have different personal
interpretations of support, such as deductive or necessary (as discussed in paragraph 3.1). Therefore,
it is not necessarily the case that a support between two arguments, A ⇒ B, has the same meaning
between participant frameworks. Recently, efforts [12] have been made to unify BA frameworks
with their varying notions of support under an all-encompassing formalism; bipolar ABA frameworks
(section 2.1). By converting each participant’s argumentation framework from a BA framework to a
bipolar ABA framework, it becomes possible to perform aggregation across the frameworks. Thus the
debate system could externally represent the current state of the debate using a BA framework and
internally use bipolar ABA frameworks to perform the aggregation.

Evaluating sets of arguments A feature of argumentation frameworks is the ability to leverage
argumentation semantics (as defined in Table 2.1) in order to determine acceptable sets of arguments.
For instance, the use of admissible semantics can inform participants about the currently rational sets
of arguments, or the use of ideal semantics can output an uncontroversial set of arguments that are
unanimously agreed upon. In general, the semantics can be employed to determine a meaningful
output of the current state of the debate (see paragraph 2.1 for an example of this), which is a
vital component of a debate platform that aims to help in decision-making or to convey some sort of
progression by producing changing conclusions as the debate goes on. As pointed out in section 3.3,
there is currently no method to automatically compute extensions for bipolar ABA semantics, so a
novel solution would need to be developed. Answer set programming (ASP) is particularly suited
for this type of task due to its ability to efficiently search for solutions within a large search space
with complex constraints and preferences. In section 3.3 we argued that other solutions, such as
an imperative implementation in Java were overly verbose. Additionally, we also concluded that no
external dependencies should be used, otherwise, the required soundness and completeness proofs
would be complicated.

5.3 Implementation

ArgSolve is a web application built using Django and ReactJS. It features a debating system, where
users can host and participate in real-time debates, and a framework creator that can be used for
creating and exploring debate representations.

Debate System

The main feature of ArgSolve is its ability to facilitate debates. The basic premise is that participants
collaboratively construct a bipolar argumentation framework (Args,⇝,⇒) that represents a debate by
progressing through discrete stages of a multiplayer debate game. First, users propose new arguments
Args∗ based on the current state of the debate and new arguments proposed by other users. This
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Figure 5.1: Stages of the debate system

modifies the state of the debate (Args ∪ Args∗,⇝,⇒). Then, users express their individual opinions
on the new state of the framework by proposing their own relations between arguments (and therefore
produce different framework instances (Args ∪ Args∗,⇝i,⇒i) for each participant i ∈ N). These
instances are then aggregated using bipolar ABA aggregation procedures (accommodating different
interpretations of the support relation) to produce a new state of the debate (Args ∪ Args∗,⇝agg

,⇒agg). After aggregation, more iterations may take place. During each stage of the debate, a visual
representation of the debate state and the result of the computation of different extensions, based
on different semantics, are used to guide participants in making informed arguments and evaluations
thereof.

Users of ArgSolve can create and join debate rooms on various topics (see Figure A.1). Debates can
be created from scratch, where users are required to provide a statement known as the initial pro-
posal. This proposal serves as an introductory argument, prompting the development of subsequent
arguments by participants. Alternatively, debates can be imported into the platform using a JSON file,
enabling the retrieval of debates from previous rooms or from debates created using the framework
creator. The latter is particularly valuable when a user wants to start a debate about a well-known
topic with established core arguments. With this tool, users can delve deeper into these arguments and
explore the subject matter more comprehensively. In whichever way the debate originates, the initial
state of the debate corresponds to some bipolar argumentation framework (Args,⇝,⇒). Debates in
ArgSolve are split into discrete stages as shown in Figure 5.1. We now overview these debate stages
in order to communicate how debates are facilitated in the tool.

Waiting: Once a debate has been created, it enters an initial stage called the waiting stage. At this
point, other users can join the debate from the lobby page, which displays the debates that are cur-
rently in progress (see Figure A.1). In the waiting view (see Figure A.2), participants can view the
list of users currently in the room, the identity of the host, and can also select their support notion
(one of deductive or necessary), which impacts how the user’s personal argumentation framework is
interpreted prior to aggregation. At any time, the host can start the debate and advance the state of
the room.

Argument Proposal: In this stage, participants individually propose different arguments related to the
initial proposal, or in reference to some existing arguments (should the current state of the debate be
from a previous debate or iteration). Users can add, modify and delete arguments which are displayed
(in real-time) to other participants in an argument pool Arg∗. A representation of the current state of
the debate, the extensions for each of the semantics and argument pool are displayed to inform the
user on what arguments they should make. The argument proposal stage persists until all users have
submitted arguments. When this occurs, the arguments are subjected to a validation stage, where the
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host may perform some basic moderation on the argument contents. This includes the ability to add,
remove, edit and delete arguments from the pool. The validation process is especially pertinent should
arguments with the same meaning arise. For instance, two participants may propose that “Cars cause
pollution” and “Cars pollute” during argument proposal. These arguments have the same meaning,
and should not be distinct. This can be dealt with manually by the host in argument validation, by
simply deleting one of the arguments. When this stage transitions to the next, the new arguments
Arg∗ are appended to the current debate state (Args∪Args∗,⇝,⇒). Figure A.3 shows the argument
proposal view as it appears to a participant.

Relation Proposal: In relation proposal, participants propose attack ⇝i and support ⇒i relations
between Args ∪ Args∗. The interface (see Figure A.4) allows users to easily draw relations between
nodes of a graph (representing the debate state), and to also view other information, such as the re-
sulting extensions for each of the semantics as a consequence of the new proposals. Upon submission,
the framework is sent to the backend in preparation for aggregation.

Procedure Selection: In this stage, the host can select from a set of bipolar ABA aggregation proce-
dures, such as quota and oligarchic rules, in order to aggregate the participant frameworks. The result
of each procedure can be previewed (by displaying the corresponding graph to all participants) before
any aggregation is performed. This feature is particularly useful if one wanted to see under what type
of procedure different extensions were admitted. For instance, if participants were experts in different
domains, it would be of interest to consider the result of the oligarchic rule with the domain experts
having veto powers. For some iterations of the debate, it may be preferable to perform different types
of aggregation procedure. If the debate was stuck in a stalemate, it may be preferable to select a
dictatorship rule, or if the debate has just begun, it may be preferable to survey all the opinions via
nomination. Whatever procedure is finally selected, the resulting aggregated framework is stored in
the backend. The host then has the opportunity to perform another iteration (returning back to the
argument proposal stage with the aggregated state as the new current state), or to end the debate.
Screenshots of this stage are available at Figure A.5 (quota) and Figure A.6 (oligarchy).

End: This stage serves as a place for the results to be displayed and saved. Participants can explore
the debate representation, compute the extensions thereof, and export the debate in a JSON file. The
debate room persists until the host leaves.

The order of these stages mirrors the constraints set out by bipolar ABA aggregation. One of the
assumptions of bipolar ABA aggregation was that the set of assumptionsAwas fixed between the input
frameworks ⟨L,Ri,A,— ⟩, . . . , ⟨L,Rn,A,— ⟩. Through the BA to bipolar ABA framework conversion
process (see Figure 5.3), the assumptions A of some ⟨L,R,A,— ⟩ ultimately correspond to arguments
Args of (Args,⇝,⇒). Thus before aggregation, the arguments Args need to be fixed across the
input frameworks, so it is a requirement that argument proposal occurs before aggregation. Naturally,
relation proposal should occur immediately after argument proposal, as to allow the participants to
evaluate/express opinions on the same set of arguments.

Framework Creator

The framework creator is a separate tool available on ArgSolve that enables users to create, modify
and explore debate representations. Users can add and remove arguments, relations and compute
extensions for each of the semantics. Additionally, users can import and export debates as JSON
files. The main purpose of the framework creator is to allow users to re-create existing debates in
order to be used in the debate system and to also analyse previous debates. This tool was extensively
used to produce some of the counter-examples in chapter 4, especially for proving if properties were
implicative and disjunctive. See Figure A.7 for a screenshot of the tool in use.
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Framework Conversion

ArgSolve uses bipolar argumentation frameworks to represent debates to users but uses bipolar ABA
frameworks in the backend to aggregate frameworks to account for the different interpretations of
support. The conversion between the two types of framework is achieved by using mappings de-
fined in [12]; given a bipolar argumentation framework (Args,⇝,⇒), the corresponding bipolar ABA
framework is:

L = Args ∪ {ac | a ∈ Args}

R = {bc ← a | a⇝ b} ∪

{
{b← a | a⇒ b} if deductive support
{a← b | a⇒ b} if necessary support

A = Args

ā = ac ∀a ∈ A

Given a bipolar ABA framework ⟨L,R,A,— ⟩, the corresponding bipolar argumentation framework is:

Args = A
⇝ = {(b, a) | ā← b ∈ R, {a, b} ⊆ A}

⇒ =

{
{(b, a) | a← b ∈ R, {a, b} ⊆ A} if deductive support
{(a, b) | a← b ∈ R, {a, b} ⊆ A} if necessary support

Computing Extensions

In both the debate and framework creator tools, there is a feature to compute the extensions for each
of the bipolar ABA semantics given a framework. This was achieved using answer set programming,
specifically using the clingo ASP system [37] and the associated Python API. As this is a novel method
to compute bipolar ABA extensions, the program definitions and associated soundness and complete-
ness proofs are discussed in detail in chapter 6.

Technical Discussion

In this section, we briefly discuss some interesting non-trivial technical aspects of the debate system.

Real-time support and interactivity: The debate system in ArgSolve is a fully real-time multiplayer
game that is implemented over the WebSocket protocol. Unlike traditional HTTP connections, Web-
Socket provides a persistent connection between the client and the server, enabling bidirectional com-
munication. This means that participants can receive updates and messages from the server instanta-
neously, without the need for frequent requests and page reloads. ArgSolve is also implemented as a
single-page application which improves user experience by providing dynamic content without page
reloads. This feature makes ArgSolve suitable for use on mobile devices.

Portability: ArgSolve does not use a database and is run entirely in memory (persistence is achieved
by saving and loading debates from JSON files). As a result, a user may easily run an instance of Arg-
Solve on a personal computer, exposing the instance to their local network with little setup required.
This makes it suitable for efficient deployment, for example, in scenarios where participants are de-
bating in some physical location, a host can quickly set up an instance. Further, ArgSolve can easily
be exposed to the internet using any suitable type of tunnelling software, such as ngrok, if desired.
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Chapter 6

Computing Extensions

In this chapter, we outline and present formal proofs for the correctness of the ASP logic programs
and Python module that computes the extensions for the admissible, preferred, complete, set-stable,
well-founded and ideal semantics in bipolar ABA. The use of certain ASP techniques in these programs
(saturation, linear orderings) and style of proof is credited to the work in [39] and [40] which outline
ASP programs for computing extensions for abstract and bipolar argumentation frameworks.

6.1 Overview

The ASP programs for computing extensions are specified in bipolar aba.lp and ideal.lp contained
within the argtools package of the debate system source code. The argtools package provides
functions to encode a given (in-memory) representation of a bipolar ABA framework into a set of facts
that are given as input to the ASP programs. It also encodes a flag denoting the desired semantics,
which is used in bipolar aba.lp to select the correct set of rules. We omit precisely how the flags
include the correct dependencies in the proofs. For our purposes, we can assume the flags cause the
inclusion of precisely the rules described in each module πµ. The encoding of a given bipolar ABA
framework F = ⟨L,R,A,— ⟩ into a set of facts F̂ is given as follows:

F̂ = { assumption(a) | a ∈ A } ∪
{ rule(a, b) | a← b ∈ R } ∪
{ contraryOf(a, ac) | (a, ac) ∈ — }

The encoded framework is passed as input into one of the ASP programs πµ described in this chapter.
To convey this fact, we describe the combined program and encoded framework as πµ(F̂), which is
equivalent to πµ ∪ F̂ .

6.2 Soundness & Completeness Proofs

In this section, we provide soundness and completeness proofs for each of the modules. To ensure
brevity, we include proofs for the admissible and preferred modules (and their dependencies) as il-
lustrative examples. However, the complete proofs for the remaining semantics can be accessed in
Appendix B.

Closed and Conflict-free

In this section, we present the closed and conflict-free module, πccf :

πccf = { deduces(B,H)← rule(H,B), assumption(B); (6.1)

deduces(X,Z)← deduces(X,Y ), deduces(Y,Z); (6.2)

attacks(X,Y )← deduces(X,CY ), contraryOf(Y,CY ); (6.3)

in(X)← not out(X), assumption(X); (6.4)
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out(X)← not in(X), assumption(X); (6.5)

⊥ ← in(X), out(Y ), deduces(X,Y ); (6.6)

⊥ ← in(X), in(Y ), attacks(X,Y ); } (6.7)

Intuitively, the module computes the deductions and attacks of the input framework, guesses an ex-
tension, and then rules out extensions that are not closed or not conflict-free. We present a formal
proof below.

Proposition 2 Let F = ⟨L,R,A,— ⟩. Then the closed and conflict-free extensions S of F coincide
with AS(πccf(F̂)).

PROOF. We need to prove two things:

(i) For each S ∈ S, there exists an interpretation I ∈ AS(πccf(F̂)) such that {a | in(a) ∈ I} = S;

(ii) For each I ∈ AS(πccf(F̂)) it holds that {a | in(a) ∈ I} ∈ S.

For (i), take a closed and conflict-free extension S ∈ S. We show that the interpretation:

I = F̂ ∪ (6.8)

{deduces(a, b) | ∃R∈R{a} ⊢R b, a, b ∈ A} ∪ (6.9)

{attacks(a, b) | ∃R∈R{a} ⊢R b̄, a, b ∈ A, (b, b̄) ∈ —} ∪ (6.10)

{in(a) | a ∈ S} ∪ {out(a) | a ∈ A \ S} (6.11)

is an answer set of πccf(F̂). To do this, we must show that (a) I satisfies πccf(F̂) and (b) that there
exists no J ⊂ I that satisfies (πccf(F̂))I .

To show (a), we have to consider if I satisfies each r ∈ Gr(πccf(F̂)):

Gr(πccf(F̂)) = F̂ ∪ (6.12)

{deduces(a, b)← rule(b, a), assumption(a) | a, b ∈ L} ∪ (6.13)

{deduces(a, c)← deduces(a, b), deduces(b, c) | a, b, c ∈ L} ∪ (6.14)

{attacks(a, b)← deduces(a, c), contraryOf(b, c) | a, b, c ∈ L} ∪ (6.15)

{in(a)← not out(a), assumption(a) | a ∈ L} ∪ (6.16)

{out(a)← not in(a), assumption(a) | a ∈ L} ∪ (6.17)

{⊥ ← in(a), out(b), deduces(a, b) | a, b ∈ L} ∪ (6.18)

{⊥ ← in(a), in(b), attacks(a, b) | a, b ∈ L} (6.19)

For each rule, we need to prove I ⊨ body(r)→ I ⊨ head(r):

• (6.12): I satisfies F̂ trivially as F̂ ⊆ I.

• (6.13): Each rule(a, b) in F̂ corresponds to some rule a← b ∈ R by construction of F̂ . Therefore,
there exists a deduction {a} ⊢{a←b} b, so the atom deduces(a, b) appears in I via (6.9).

• (6.14): deduces(a, b) corresponds to {a} ⊢R1 b and deduces(b, c) corresponds to {b} ⊢R2 c by con-
struction of I (6.9). By definition of a deduction, {a} ⊢R1∪R2 c holds. Therefore, deduces(a, c) is
in I by (6.9).

• (6.15): deduces(a, c) corresponds to {a} ⊢R c by (6.9) and contraryOf(b, c) corresponds to
(b, c) ∈— by construction of F̂ . Thus attacks(a, b) is added by (6.10).
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• (6.16) and (6.17): Consider each a ∈ A. By (6.11), in(a) ∈ I iff out(a) ̸∈ I. So in the case of
(6.16), if I satisfies body(r), then I ∩ body−(r) = ∅, so out(a) ̸∈ I, and therefore in(a) ∈ I. The
same argument is applicable for (6.17).

• (6.18): By contradiction, suppose this rule is not satisfied: {in(a), out(b),
deduces(a, b)} ⊆ I. Then {a} ⊢R b, a ∈ S and b ̸∈ S by (6.9) and (6.11). However, this is
equivalent to S not being closed.

• (6.19): By contradiction, suppose this rule is not satisfied: {in(a), in(b),
attacks(a, b)} ⊆ I. Then {a} ⊢R b̄ and a, b ∈ S by (6.10) and (6.11). However, this is equivalent
to S not being conflict-free.

(b) Take some J ⊆ I, and suppose J satisfies πccf(F̂). We show that J = I.

(πccf(F̂))I = F̂ ∪ (6.20)

{deduces(a, b)← rule(b, a), assumption(a) | a, b ∈ A} ∪ (6.21)

{deduces(a, c)← deduces(a, b), deduces(b, c) | a, b, c ∈ A} ∪ (6.22)

{attacks(a, b)← deduces(a, c), contraryOf(b, c) | a, b, c ∈ A} ∪ (6.23)

{in(a)← assumption(a) | a ∈ A, out(a) ̸∈ I} ∪ (6.24)

{out(a)← assumption(a) | a ∈ A, in(a) ̸∈ I} ∪ (6.25)

{⊥ ← in(a), out(b), deduces(a, b) | a, b ∈ A} ∪ (6.26)

{⊥ ← in(a), in(b), attacks(a, b) | a, b ∈ A} (6.27)

As J satisfies (πccf(F̂))I , it must be the case that F̂ ⊆ J . Therefore, the same atoms for deductions
and attacks are present in J as in I. Now consider (6.24), which enforces that in(a) ∈ J iff out(a) ̸∈ I.
However, by construction of I, we also have that out(a) ̸∈ I iff in(a) ∈ I. So it must be the case that
in(a) ∈ J iff in(a) ∈ I. A similar argument can be made for (6.25), so therefore I and J coincide.

To show (ii), take some I ∈ AS(πccf(F̂)). We first show that the deduces(·, ·) and attacks(·, ·) atoms in
I correspond with the deductions and attacks in F .

As I is an answer set, it satisfies Gr(πccf(F̂)). Trivially, F̂ ⊆ I holds. We first prove by induction
on the length of an arbitrary deduction in F that there exists a corresponding deduces(·, ·) atom. For
n = 1, the deduction {a} ⊢R b corresponds to a single rule R = {b ← a}. Since all rules are encoded
in F̂ , the atom deduces(a, b) is present in I due to (6.13). Now, assume that any k length deduction
exists as an atom deduces(a, b) in I. For n = k + 1, the deduction ∃R {a} ⊢R b can be expressed as a
sequence of rules R = {b← δ1, δ1 ← δ2, . . . , δk+1 ← a}. The rules R′ = {δ1 ← δ2, . . . , δk+1 ← a} form
a deduction {a} ⊢R′

δ1. As |R′| = k, deduces(a, δ1) ∈ I. We also have that deduces(δ1, b) exists due to
b ← δ1 (using the same reasoning in the base case). Therefore, due to (6.14), the atom deduces(a, b)
must be present in I. It then follows since every deduction is represented in I, every attack is also in
I by (6.15). Due to the minimality of answer sets, no other instances of the atoms deduces(·, ·) and
attacks(·, ·) are present in I.

Now, as I satisfies (6.18), it must be the case, assuming in(a) and out(b) are present in I, that
deduces(a, b) ̸∈ I. Now consider S = {a | in(a) ∈ I}. S is clearly closed, as for any a ∈ S and
b ∈ A \ S, it holds that {a} ⊢R b ̸∈ R. As I satisfies (6.19), it must be the case, assuming in(a) and
in(b) are present in I, that attacks(a, b) ̸∈ I. S is also conflict-free, because for any a, b ∈ S, it holds
that {a} ⊢R b̄ ̸∈ R. □
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Admissible

In this section, we present the admissible module, πadm = πccf ∪ π′:

π′ = { defeats(Y,X)← attacks(Y,X); (6.28)

defeats(Y,X)← deduces(X,Z), attacks(Y,Z); (6.29)

defeated(X)← defeats(Y,X), in(Y ); (6.30)

not defended(X)← attacks(Y,X), not defeated(Y ); (6.31)

⊥ ← in(X), not defended(X); } (6.32)

As this module depends on πccf , we can use the splitting sets to leverage AS(πccf(F̂)) to compute
AS(πattnd(F̂)): take the splitting set X = {deduces, attacks, in, out, rule,
assumption, contraryOf}. Then botX(πadm(F̂)) = πccf(F̂) and topX(πadm(F̂)) = π′. Therefore, we
can instantiate the splitting theorem (Proposition 1) as below:

AS(πadm(F̂)) =
⋃

J∈AS(πccf (F̂))

AS(J ∪ π′) (6.33)

Proposition 3 LetF = ⟨L,R,A,— ⟩. Then the admissible extensions S ofF coincide withAS(πadm(F̂)).

PROOF. We need to prove two things:

(i) For each S ∈ S, there exists an interpretation I ∈ AS(πadm(F̂)) such that {a | in(a) ∈ I} = S;

(ii) For each I ∈ AS(πadm(F̂)) it holds that {a | in(a) ∈ I} ∈ S.

For (i), take an admissible extension S. As admissible extensions are closed and conflict-free, we know
by Proposition 2 that there exists J ∈ AS(πccf(F̂)) where:

J = F̂ ∪ (6.34)

{deduces(a, b) | ∃R∈R{a} ⊢R b, a ∈ A, b ∈ L} ∪ (6.35)

{attacks(a, b) | ∃R∈R{a} ⊢R b̄, a, b ∈ A, (b, b̄) ∈ —} ∪ (6.36)

{in(a) | a ∈ S} ∪ {out(a) | a ∈ A \ S} (6.37)

We show that the interpretation I (below) is an answer set of J ∪π′, where it then follows that I is an
answer set of πadm(F̂) by (6.33).

I = J ∪ (6.38)

{defeats(a, b) | ∃R∈R{a} ⊢R b̄, a, b ∈ A} ∪ (6.39)

{defeats(a, b) | ∃R∈R{a} ⊢R c̄, ∃R∈R{b} ⊢R c, a, b, c ∈ A} ∪ (6.40)

{defeated(a) | (∃R∈R{b} ⊢R ā ∧ b ∈ S ∧ a ∈ A)∨
(∃R∈R{b} ⊢R c̄ ∧ ∃R∈R{a} ⊢R c ∧ b ∈ S ∧ {a, c} ⊆ A)} ∪

(6.41)

{not defended(a) | ¬(S defends a), a ∈ A} (6.42)

To show I is an answer set of J ∪π′, we need to show (a) I satisfies J ∪π′ and (b) that there exists no
K ⊂ I that satisfies (J ∪ π′)I .

To show (a), we have to consider if I satisfies each r ∈ Gr(J ∪ π′):

Gr(J ∪ π′) = J ∪ (6.43)

{defeats(a, b)← attacks(a, b) | a, b ∈ L} ∪ (6.44)
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{defeats(a, b)← deduces(b, c), attacks(a, c) | a, b, c ∈ L} ∪ (6.45)

{defeated(a)← defeats(b, a), in(b) | a, b ∈ L} ∪ (6.46)

{not defended(a)← attacks(b, a), not defeated(b) | a, b ∈ L} ∪ (6.47)

{⊥ ← in(a), not defended(a) | a ∈ L} (6.48)

• (6.43): As J ⊆ I, then I clearly satisfies J .

• (6.44): Suppose attacks(a, b) ∈ I. This can only be the case if attacks(a, b) ∈ J , as the atoms do
not appear at the heads of any other rule in I \ J . Therefore, we can deduce that ∃R∈R{a} ⊢R b̄
(6.36). Then defeats(b) ∈ I by (6.39).

• (6.45): Suppose {deduces(b, c), attacks(a, c)} ⊆ I. By similar reasoning to above, it must be the
case that ∃R∈R {b} ⊢R c (6.35) and ∃R∈R {a} ⊢R c̄ (6.36). Then defeats(a, b) ∈ I by (6.40).

• (6.46): Suppose {defeats(b, a), in(b)} ⊆ I. As defeats(·) atom may only come from (6.44) or
(6.45) as it does not appear at the head of any other rule. We also know that b ∈ S due to in(b).
Therefore, we have that (∃R∈R{b} ⊢R ā, b ∈ S, a ∈ A) ∨ (∃R∈R{b} ⊢R c̄, ∃R∈R{a} ⊢R c, b ∈
S, a, c ∈ A) via (6.39) and (6.40). Then defeated(a) ∈ I by (6.41).

• (6.47): Suppose attacks(b, a) ∈ I and I∩defeated(b) = ∅. Then ∃R∈R{b} ⊢R ā and ¬(∃R∈R, α∈S{α} ⊢R
b̄) ∧ ¬(∃ α∈S, c∈A∃R∈R{α} ⊢R c̄, ∃R∈R{b} ⊢R c). Therefore, ∃B ⊆ A such that B = {b}
and B attacks a, and S does not attack Cl(B). Hence S does not defend a. Thus by (6.42),
not defended(a) ∈ I.

• (6.48): By contradiction, suppose {in(a), not defended(a)} ⊆ I. Then a ∈ S (6.37) and
¬(S defends a) (6.42). However, this would mean that S is not admissible, as it contains an
assumption a that is attacked and not defended by S.

To show (b), consider some K ⊆ I such that K satisfies (J ∪ π′)I . We show that K = I.

Firstly, we at least know that K ∩ atoms(πccf(F̂)) = I ∩ atoms(πccf(F̂)), because otherwise J ̸∈
AS(πccf(F̂)). To see why, consider if K ∩ atoms(πccf(F̂)) ̸= I ∩ atoms(πccf(F̂)), which means K ∩
atoms(πccf(F̂)) ⊂ I ∩ atoms(πccf(F̂)). But then K ∩ atoms(πccf(F̂)) ⊂ J would hold as J = I ∩
atoms(πccf(F̂)). As K is assumed to satisfy (πadm(F̂))I , it must also satisfy (πccf(F̂))I as the latter is a
sub-program of the former. However, as J = I∩atoms(πccf(F̂)), we have that (πccf(F̂))I = (πccf(F̂))J .
However, this would mean that K ∩ atoms(πccf(F̂)) is a subset-minimal interpretation that satisfies
(πccf(F̂))J , and so J would not be an answer set.

For the remaining ground atoms in atoms(π′) = atoms(πadm) \ atoms(πccf(F̂)), consider each rule in
(J ∪ π′)I :

(J ∪ π′)I = J ∪ (6.49)

{defeats(a, b)← attacks(a, b) | a, b ∈ L} ∪ (6.50)

{defeats(a, b)← deduces(b, c), attacks(a, c) | a, b, c ∈ L} ∪ (6.51)

{defeated(a)← defeats(b, a), in(b) | a, b ∈ L} ∪ (6.52)

{not defended(a)← attacks(b, a) | a, b ∈ L, defeated(b) ̸∈ I} ∪ (6.53)

{⊥ ← in(a), not defended(a) | a ∈ L} (6.54)

• (6.49): We have already reasoned that K ∩ atoms(πccf(F̂)) = I ∩ atoms(πccf(F̂)) (and J ⊆
atoms(πccf(F̂))).

• (6.50) and (6.51): As K satisfies these rules and we know K and I share atoms in K ∩
atoms(πccf(F̂)) = I ∩ atoms(πccf(F̂)) which make up the body of these rules, we can deduce
that the head atoms coincide defeats(a, b) ∈ K iff defeats(a, b) ∈ I.
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• (6.52): As defeats(a, b) ∈ K iff defeats(a, b) ∈ I and in(b) ∈ K iff in(b) ∈ I (again, by K ∩
atoms(πccf(F̂)) = I ∩ atoms(πccf(F̂))), we can deduce that defeated(a) ∈ K iff defeated(a) ∈ I.

• (6.53): We have that not defended(a) ∈ K whenever attacks(b, a) ∈ K and defeated(b) ̸∈
I. Since not defended(·) does not appear at the head of any other rule here, we know that
not defended(a) ∈ K iff attacks(b, a) ∈ K ∧ defeated(b) ̸∈ I. We have already reasoned that
attacks(b, a) ∈ K iff attacks(b, a) ∈ I, so it holds that not defended(a) ∈ K iff attacks(b, a) ∈
I ∧ defeated(b) ̸∈ I. The RHS holds precisely when ∃R∈R{b} ⊢R ā and ¬(∃R∈R, α∈S{α} ⊢R
b̄) ∧ ¬(∃ α∈S, c∈A∃R∈R{α} ⊢R c̄, ∃R∈R{b} ⊢R c), or, equivalently, ¬(S defends a). Therefore,
not defended(a) ∈ I by (6.41). We also know this is the only way that not defended(a) ∈ I, as
not defended(·) does not appear at the head of any other rule in I. Therefore, not defended(b) ∈
K iff not defended(b) ∈ I.

• (6.54) is a constraint, and so it is satisfied by the absence of atoms. Therefore, if I satisfies this
rule, it already does so minimally.

To show (ii), take an arbitrary I ∈ AS(πadm(F̂)). By (6.33), we know that I ∈ AS(J ∪ π′) for some
J ∈ AS(πccf(F̂). By Proposition 2, we know that J corresponds to to some closed and conflict-free
S = {a | in(a) ∈ J}. It remains to prove that ∀B⊆A if B is closed and attacks S, then S attacks
B. By contradiction, suppose ∃B⊆A such that B is closed and attacks S, and S does not attack B
back. This corresponds to some b ∈ B and R ∈ R where {b} ⊢R ā and ̸ ∃α∈S, R∈R, β∈Cl(B){α} ⊢R β̄.
As I ∈ AS(J ∪ π′), it must satisfy the Gr(J ∪ π′). Again, in Proposition 2, we reasoned that the
attack and deduces atoms are in correspondence with the attack and deductions in F . Thus, we
have that attacks(b, a) ∈ I and {attacks(α, β) | α ∈ S, β ∈ Cl(B)} ̸⊆ I. Thus, neither (6.44) nor
(6.45) are triggered, so {defeated(β) | β ∈ Cl(B)} ̸⊆ I holds as (6.46) does not trigger. This would
lead to not defended(a) ∈ I by (6.47). Therefore, since {in(a),not defended(a)} ⊆ I, we violate the
constraint (6.48), which would lead to I not being an answer set, contradicting our initial assumption.
□

Ordering

In this section, we present the ordering module πord, which computes an alphabetical ordering over
{a | assumption(a) ∈ F̂}, whenever πord takes F̂ as input.

πord = { lt(X,Y )← assumption(X), assumption(Y ), X < Y ; (6.55)

nsucc(X,Z)← lt(X,Y ), lt(Y,Z); (6.56)

succ(X,Y )← lt(X,Y ), not nsucc(X,Y ); (6.57)

ninf(X)← lt(Y,X); (6.58)

nsup(X)← lt(X,Y ); (6.59)

inf(X)← not ninf(X), assumption(X); (6.60)

sup(X)← not nsup(X), assumption(X); } (6.61)

Proposition 4 Let F = ⟨L,R,A,— ⟩. Then the fixed alphabetical ordering over A coincides with the
ground atoms of the unique stable model Ω of πord(F̂).

We reason informally that this proposition holds. Note that πord(F̂) is a stratified logic program (a
special kind of logic program that contains negation-as-failure in a restricted way), thus it contains
exactly one unique stable model (which we call Ω). Therefore it suffices to show that given F , the
lt(·, ·), nsucc(·, ·), succ(·, ·), ninf(·, ·), nsup(·, ·), inf(·, ·) and sup(·, ·) atoms in Ω correspond exactly
to the fixed alphabetical ordering over A. We motivate this using an example. Suppose we had an
arbitrary set of assumptions {a, b, c}. First, due to (6.55), we obtain lt(a, b), lt(a, c) and lt(b, c). We
then obtain nsucc(a, c) due to (6.56). Therefore, we obtain succ(a, b) and succ(b, c). Rules (6.58)
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and (6.59) derive ninf(b), ninf(c), nsup(b) and nsup(a). Therefore, we are left with inf(a) and sup(c)
which are derived from (6.60) and (6.61). In this scenario:

Ω = {lt(a, b), lt(a, c), lt(b, c),nsucc(a, c), succ(a, b), succ(b, c),ninf(b),ninf(c),nsup(b),nsup(a),

inf(a), sup(c)} ∪ F̂

Preferred

In this section, we present the preferred module πpref = πadm ∪ πord ∪ π′.

π′ = { inN(X) ∨ outN(X)← out(X); (6.62)

inN(X)← in(X); (6.63)

eq upto(Y )← inf(Y ), in(Y ), inN(Y ); (6.64)

eq upto(Y )← inf(Y ), out(Y ), outN(Y ); (6.65)

eq upto(Y )← succ(Z, Y ), in(Y ), inN(Y ), eq upto(Z); (6.66)

eq upto(Y )← succ(Z, Y ), out(Y ), outN(Y ), eq upto(Z); (6.67)

eq← sup(Y ), eq upto(Y ); (6.68)

undefeated upto(X,Y )← inf(Y ), outN(X), outN(Y ); (6.69)

undefeated upto(X,Y )← inf(Y ), outN(X), not defeats(Y,X); (6.70)

undefeated upto(X,Y )← succ(Z, Y ), undefeated upto(X,Z), outN(Y ); (6.71)

undefeated upto(X,Y )← succ(Z, Y ), undefeated upto(X,Z), not defeats(Y,X); (6.72)

undefeated(X)← sup(Y ), undefeated upto(X,Y ); (6.73)

spoil← eq; (6.74)

spoil← inN(X), inN(Y ), attacks(X,Y ); (6.75)

spoil← inN(X), outN(Y ), deduces(X,Y ); (6.76)

spoil← inN(X), outN(Y ), attacks(Y,X), undefeated(Y ); (6.77)

inN(X)← spoil, assumption(X); (6.78)

outN(X)← spoil, assumption(X); (6.79)

⊥ ← not spoil; } (6.80)

If we use the splitting set X, then botX(πpref(F̂)) = πadm ∪ πord(F̂) and topX(πpref(F̂)) = π′. We can
then instantiate the splitting theorem (Proposition 1) as in (6.81) to re-use answer sets of πadm(F̂).

X = {deduces, attacks, in, out, rule, assumption, contraryOf,defeats,defeated,not defended,

lt,nsucc, succ,ninf,nsup, inf, sup}

AS(πpref(F̂)) =
⋃

J∈AS(πadm∪ πord(F̂))

AS(J ∪ π′) (6.81)

We can further split AS(πadm ∪ πord(F̂)) by using X ′ as a splitting set. Then botX′(πadm ∪ πord(F̂)) =
πadm(F̂) and topX′(πadm ∪ πord(F̂)) = πord.

X ′ = {deduces, attacks, in, out, rule, assumption, contraryOf,defeats,defeated,not defended}

AS(πadm ∪ πord(F̂)) =
⋃

J∈AS(πadm(F̂))

AS(J ∪ πord) (6.82)
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Proposition 5 LetF = ⟨L,R,A,— ⟩. Then the preferred extensions S ofF coincide withAS(πpref(F̂)).

PROOF. We need to prove two things:

(i) For each S ∈ S, there exists an interpretation I ∈ AS(πpref(F̂)) such that {a | in(a) ∈ I} = S;

(ii) For each I ∈ AS(πpref(F̂)) it holds that {a | in(a) ∈ I} ∈ S.

For (i), take a preferred extension S. Preferred extensions are also admissible, so by Proposition 3, we
know that there exists J ∈ AS(πadm(F̂)) where:

J = F̂ ∪ (6.83)

{deduces(a, b) | ∃R∈R{a} ⊢R b, a ∈ A, b ∈ L} ∪ (6.84)

{attacks(a, b) | ∃R∈R{a} ⊢R b̄, a, b ∈ A, (b, b̄) ∈ —} ∪ (6.85)

{in(a) | a ∈ S} ∪ {out(a) | a ∈ A \ S} (6.86)

{defeats(a, b) | ∃R∈R{a} ⊢R b̄, a, b ∈ A} ∪ (6.87)

{defeats(a, b) | ∃R∈R{a} ⊢R c̄, ∃R∈R{b} ⊢R c, a, b, c ∈ A} ∪ (6.88)

{defeated(a) | (∃R∈R{b} ⊢R ā ∧ b ∈ S ∧ a ∈ A)∨
(∃R∈R{b} ⊢R c̄ ∧ ∃R∈R{a} ⊢R c ∧ b ∈ S ∧ {a, c} ⊆ A)} ∪

(6.89)

{not defended(a) | ¬(S defends a), a ∈ A} (6.90)

We propose that the interpretation J ′ = J ∪Ω is an answer set of J ∪πord, where it then follows that it
is an answer set of πadm ∪ πord(F̂) by (6.82). As J ⊆ J ′, then J ′ satisfies J . Similarly as Ω ⊆ J ′, then
J ′ satisfies Ω. Therefore, J ′ = J ∪ Ω is a model of J ∪ πord. J ′ also minimally satisfies (J ∪ πord)J

′
.

Hence, J ′ ∈ AS(πadm ∪ πord(F̂)).

We then propose that the interpretation I is an answer set of J ′ ∪ π′, where it then follows by (6.81)
that I is an answer set of πpref(F̂).

I = J ′ ∪ (6.91)

{inN(a) | a ∈ A} ∪ {outN(a) | a ∈ A} ∪ (6.92)

{eq upto(a) | a ∈ A} ∪ {eq} ∪ (6.93)

{undefeated upto(a, b) | a, b ∈ A} ∪ {undefeated(a) | a ∈ A} ∪ (6.94)

{spoil} (6.95)

To show I is an answer set of J ′ ∪ π′, we need to show (a) I satisfies J ′ ∪ π′ and (b) that there exists
no K ⊂ I that satisfies (J ′ ∪ π′)I .

For (a), the proof is less involved than in previous modules. As J ′ ⊆ I, then I satisfies J ′. For the
remaining rules in π′, observe that I contains all heads of each ground rule in π′, so I satisfies these
rules. For the constraint (6.80), we have that spoil ∈ I, so this too is satisfied.

To prove (b), suppose there is some K ⊂ I such that K satisfies (J ′ ∪ π′)I by contradiction. We first
note that K cannot be missing any of the ground atoms in J ′ as it satisfies (J ′ ∪ π′)I . Therefore, it
must be missing some other atoms in I \ J ′.

Observing the rest of I, we at least know for sure that some of these missing atoms fromK in I must be
of the form inN(·), outN(·) or spoil, because otherwiseK does not satisfy (J ′∪π′)I , as every instance of
eq upto(·), eq, undefeated upto(·, ·) and undefeated must all appear if none of inN(·), outN(·) or spoil
are missing due to the rules in π′. In other words, if none of inN(·), outN(·) and spoil are missing, then
no atom is missing due to the definitions of the rules. In fact, we know that spoil must be missing as if
spoil ∈ K, then K = I as any missing atom would be added by the saturation rules (6.78) and (6.79).
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As spoil ̸∈ K, no (grounded) rule in the range (6.74) - (6.77) could have fired, otherwise spoil would
have been introduced. Now, consider an extension S′ = {a | inN(a) ∈ K}. From the rules (6.74) -
(6.77) we can deduce:

• S′ ̸= S by (6.74). To see why, consider that eq has not been deduced. Therefore, the iteration
over the assumptions via the fixed ordering of assumptions in rules (6.64) - (6.68) terminated
early, due to the non-correspondence of some in(a) and inN(a), or out(a) and outN(a).

• S′ is conflict-free by (6.75).

• S′ is closed by (6.76).

• S′ defends itself from all attacks by (6.77). This uses the undefeated(·) predicate, which verifies
through iteration over the fixed ordering of assumptions in rules (6.69) - (6.73) that given
assumption is not defeated (by directly attacking, attacking the deduction of the assumption
or by simply not being in S′ (and so it does not need to be defended)) by any assumption in
S′. Thus undefeated(·) is not derived we can conclude that S′ carries out a successful defence
against that assumption.

In addition, we know from rule (6.63) that S ⊂ S′. However, this means that we have found another
extension S′ that is also admissible and is also a strict superset of S. Therefore, as S is not maximally-
admissible, it is not preferred. This is a contradiction of our initial assumption.

To prove (ii), take some arbitrary interpretation I ∈ AS(πpref(F̂)). By (6.81), there exists some
J ′ ∈ AS(πadm ∪ πord(F̂)) where J ′ = I ∩ atoms(πadm ∪ πord(F̂)). Further, by (6.82), there exists some
J ∈ AS(πadm(F̂)) where J = J ′ ∩ atoms(πadm(F̂)). Therefore, by Proposition 3, there exists some
admissible extension S = {a | in(a) ∈ J} = {a | in(a) ∈ I}. Now we prove that S is also preferred, by
showing that there does not exist any S′ ⊃ S that is also admissible.

By contradiction, suppose there exists some admissible S′ ⊃ S. Now consider the interpretation
K ⊂ I, where:

K = J ′ ∪ {inN(a) | a ∈ S′} ∪ {outN(a) | a ̸∈ S′} ∪K ′

Let K ′ be the ground atoms that are included due to the inN(a) and inN(a) in K and the rules in π′.
Importantly, we construct K so that spoil ̸∈ K. Observe that K ⊂ I due to the saturation of I. To see
why, consider that any interpretation that satisfies πpref(F̂) must include spoil due to (6.80), which
then causes the addition of every inN(·) and outN(·).

We argue that if there exists S′ ⊃ S, then K satisfies (πpref(F̂))I . Clearly K satisfies πadm(F̂) as
πadm(F̂) ⊆ K. Similarly K satisfies πord(F̂) as Ω ⊆ K. For every other rule excluding spoil-headed
rules, we observe that they are satisfied by K ′ by construction. Thus it remains to show that spoil does
not need to be included in K for K to satisfy (πpref(F̂))I . spoil only needs to be included in K if any
of the rules (6.74) - (6.77) are triggered:

• (6.74): as S′ ̸= S, this rule does not fire;

• (6.75): as S′ is conflict-free, this rule does not fire;

• (6.76): as S′ is closed, this rule does not fire;

• (6.74): as S′ defends itself from all attacks, this rule does not fire;

thus in all scenarios spoil does not need to be in K. Thus as K satisfies (πpref(F̂))I and K ⊂ I, this
means there exists a more subset-minimal model of (πpref(F̂))I , thus I is not an answer set of πpref(F̂).
However, this is a contradiction of our initial assumption. □
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Evaluation

In this chapter, we perform an evaluation of the contributions of this project. First, we begin by
providing a brief discussion on the extent of the preservation results that were developed in chapter 4.
Following this, we evaluate the debate platform (as implemented in chapter 5), which includes a
discussion of the correctness of the extension computer in chapter 6.

7.1 Discussion of Preservation Results

With reference to the table of preservation results in Table 4.1, we note that all of the results in [13]
have been fixed (either by providing an alternative theorem statement or by modifying the proof)
except for Theorem 4.9, where the proof was found to be incorrect but a correction, in the form of a
suitable implicative and disjunctive example, was not found for the properties of being an extension
under the preferred, complete, well-founded and ideal semantics. However, two novel theorems
were defined; Theorem† 6 and Theorem† 7, which provide impossibility results for a subset of these
properties. There may be a future possibility of using a modified version of the extension computer to
exhaustively search for this counter-example for frameworks with |A| ≥ 5 (or it may be the case that
this bound can be lowered).

The preservation results are a significant contribution as they precisely express the limitations of bipo-
lar ABA aggregation. The results are useful in evaluating any application of bipolar ABA aggregation
(e.g. evaluating ArgSolve in paragraph 7.2), clearly delineating the scope of agreement that can be
preserved using such judgement aggregation rules. In general, the preservation results indicate that
the preservation of properties is only guaranteed under quite limiting circumstances; in most cases,
high-level semantic agreement (in the form of participant frameworks sharing acceptable extensions)
is not guaranteed to be expressed in the aggregated framework. In conditions where it is guaranteed,
it is normally the case that these conditions are too strict, such as in Theorem† 3, Theorem 4.8, and
Theorem 4.11, which indicate that properties are only preserved when |A| ≤ 2. That being said, it is
important to note that our definition of preservation is quite strict: properties may be preserved during
aggregation in some scenarios, it is just the case that this preservation is not guaranteed across every
possible combination of frameworks. So although this study is thorough, there is still an opportunity
to develop more fine-grained results, which we further discuss in chapter 8.

7.2 ArgSolve

In this section, we aim to evaluate ArgSolve as a debate tool. First, we provide a general motivation for
the usefulness of the tool by describing a hypothetical case study where ArgSolve is used in decision-
making. Then, we evaluate the ability of ArgSolve to effectively debate and the general performance
of the system via a stress test.

Case Study

To demonstrate the potential of ArgSolve, we describe a case study where the platform is used as
a decision-making tool in an urban planning setting. In this scenario, the local council of a town
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(a) (b)

Figure 7.1: Relevant part of the aggregated frameworks in the first debate iteration.

is deciding whether or not to build a new shopping centre in the area. As the potential impact of
such a project is multi-faceted, involving multiple parties of interest, the council decides to consult
the opinions of several community representatives in order to make a decision. In the focus group,
there are three residents, two members of public representing the commercial interests in the area,
and the council treasurer. A member of the local council acts as a debate host and launches a debate
in ArgSolve with the initial proposal a0:“The council should approve the construction of the shopping
centre.”

In the first round of argument proposal, one participant proposes that a1:“Noise pollution caused by the
construction and ongoing activities of the shopping centre would negatively impact the residents’ quality of
life.” Another participant sees this argument in the argument pool and proposes a counter-argument
a2:“Access to the shopping centre’s amenities enhances the quality of life for residents in the area.” The
debate moves onto relation proposal and then to procedure selection. The host previews the use of
the nomination rule to gauge the general sentiment, resulting in the framework in Figure 7.1a. Using
the extension computer, the host sees that there are two distinct preferred extensions, {a0, a2} and
{a1}, representing two opposing viewpoints, and no ideal extension. To move towards a consensus,
the host decides to use an oligarchic aggregation rule, assigning veto powers to the residents as they
are the most authoritative on this matter. The result is shown in Figure 7.1b, where the residents did
not unanimously agree that ā0 ← a1, resulting in the ideal extension {a0, a2}.

In the next debate iteration, one of the commercial representatives proposes a3: “The influx of cus-
tomers drawn to the area would provide a substantial boost to the local economy.” The other commercial
representative sees this argument in the pool, and proposes a4: “This is not necessarily the case, the
shopping centre may adversely affect local businesses by diverting customers and may not guarantee sig-
nificant employment for local residents.” The participants express their opinions on these arguments in
the relation proposal stage. In procedure selection, the host uses a quota rule with a majority (q = 4)
to obtain the framework in Figure 7.3a. By computing the extensions, the hosts sees that a3 and a4
are acceptable with respect to the preferred semantics, but are in two different preferred extensions,
reflecting that the arguments are contested, thus additionally a3 and a4 are not in the ideal extension.
a0 is still in the ideal extension, so the host makes a mental note that the argument between a3 and
a4 should be explored further (perhaps in another iteration), and neither should solely justify the case
for or against building the shopping centre.

In the next iteration, a participant proposes a5: “The shopping centre would increase traffic in the area.”
Prompted by this argument, arguments a6: “Traffic congestion would negatively affect the area.”, a7:
“The council could improve the surrounding infrastructure to accommodate the increased traffic.”, a8:
“The cost of improving the infrastructure is too high.” and a9: “Although expensive, the infrastructure
upgrade is worth the cost, and would improve the quality of life of the residents.” are all proposed in
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(a) (b) (c)

Figure 7.2: Relevant part of the aggregated frameworks in the third debate iteration.

the same stage. In relation proposal, the host decides that the commercial representatives should
abstain from proposing relations in this iteration, as they do not directly pay taxes to the council.
However, the residents and the council treasurer are all involved. In procedure selection, the host
gauges the agreed-upon sentiment by previewing the result of the oligarchic rule (with the involved
participants having veto powers), which is shown in Figure 7.2a. The host notes that there is clear
agreement over the rules a5 ← a0, a6 ← a5, ā0 ← a6, indicating that all participants accept that the
shopping centre will cause increased traffic, that this would cause a negative effect on the area, and
the latter presents a reason for not constructing the shopping centre at all. However, due to the lack of
relations between the other arguments, there is disagreement with regard to whether or not the cost
of improving the infrastructure to accommodate the increased traffic is worth it. The host previews
a dictatorship aggregation rule with the treasurer as the dictator (displayed in Figure 7.2b), which is
shown to all participants as an expert opinion (as the treasurer is well-versed in all matters related
to the council budget). Finally, the host selects a quota rule that reflects a clear majority over the
participants of this round (the residents and the treasurer), selecting q = 3 (out of 4). The result is
Figure 7.2c, where the residents, ignoring the advice of the council treasurer, believe that the expense
of the infrastructure upgrade is worth the cost reflected by the presence of ā8 ← a9 and the absence
of ā9 ← ā8 and ā7 ← a8 in the final aggregated framework.

In the end, this results in the framework in Figure 7.3b, where the host notes that the ideal extension
is {a0, a1, a4, a7, a9}, indicating that there is agreement that construction should proceed (due to a0)
and that the surrounding road infrastructure is due for an upgrade as a result (due to a7). The
resulting framework acts as a record of the outcome of the debate (in conjunction with the computed
extensions) and is saved: in future, the debate could be resumed using its JSON representation or
explored further in the framework creator.

This case study highlights the ability of ArgSolve to be used as a decision-making tool. The exten-
sion computer, aggregation preview and representation all work in tandem to help the host navigate
through the debate. However, this case study does also demonstrate the level of involvement required
of the host in order to facilitate the debate. The host is required to select the aggregation rule accord-
ing to their intuition, and must also guide the participants to focus on key areas (this is not necessary
but helps result in better outcomes). As a result, ArgSolve is not well-suited as a debate tool where
communication between participants is difficult, and when the host does not have a suitable under-
standing of how to facilitate a debate. In a setting where ArgSolve is exclusively hosted as a web
application, these weaknesses may be exacerbated due to participants not necessarily being in the
same physical location.
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(a) Relevant part of the aggregated framework in
the second iteration.

(b) The final framework after all iterations.

Figure 7.3

Computing Extensions

One function of ArgSolve is its ability to compute extensions for each of the different semantics. As
this function is a major feature of the debate tool, it is important that the soundness (every extension
outputted by the tool is indeed an extension under the semantics) and completeness (every extension
under the semantics is outputted by the tool) of the extension computer is evaluated. In chapter 6,
the full soundness and completeness proof for each of the different semantics provides a full demon-
stration that the extension computer works correctly.

Ability to Debate

In the background (section 3.2) and requirements (section 5.1), we discussed some of the weaknesses
of current debate systems and also discussed, from the ground up, the absolute requirements of a
debate system by using conversation-centric debate as a benchmark. In this section, we aim to evaluate
ArgSolve with respect to these areas by focusing on the ability of ArgSolve to:

(i) Improve the comprehension of the state of the debate.

(ii) Aggregate participant opinions effectively during a debate.

Debate comprehension: The framework representation of the debate and the list of extensions for
each of the semantics exist to help participants understand the state of the debate. The BA framework
can be considered an instance of an argument map [34], which is a well-studied educational tool
that improves comprehension and recall [44]. Specifically, nested exchanges can be followed easily
as the relationships are graphically and spatially indicated. Further, the list of extensions for the
semantics provides a summary of the debate as displayed in its usage in the case study. So in absolute
terms, ArgSolve already presents an improvement over conversation-centric debate in that regard.
In comparison with existing debate tools, such as Kialo, we argue that the argument representation
in ArgSolve is more expressive too. Recall that one of the weaknesses of existing debate systems
was the limitation in representing complex debates. A (non-factual) example was given to illustrate
this, where there was a lack of ability to view different perspectives on the morality of euthanasia;
(suppose) Buddism believes euthanasia is morally acceptable and both Judaism and Christianity view
euthanasia as immoral, but the latter deems it immoral for contradicting reasons. Although Kialo could
represent this argument, it could not discern between the viewpoints of Judaism and Christianity. We
can construct the same argument in ArgSolve, as in Figure 7.4a. The three distinct views are visible
in the preferred extensions of the framework, given in Figure 7.4b. Furthermore, BA frameworks can
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(a) Representation of the euthanasia debate. (b) The preferred extensions for the euthanasia debate.

Figure 7.4

represent any arbitrary tree structure present in Kialo. Thus, BA frameworks are more expressive in
this way than the pro and con tree structure often seen in leading platforms such as Kialo.

Aggregation of opinions: One direct application of the preservation results developed in chapter 4 is
to evaluate the effectiveness of the aggregation procedures in ArgSolve. Intuitively, the results signify
the ability of the aggregation procedure to compromise across the opinions of participants held in
debate. Although participants may not directly agree on the proposed attacks and supports, we would
hope that if they express high-level agreement, in the form of their proposed framework exhibiting
the same properties, that this high-level agreement would be captured in the aggregated framework.
If this is not preserved, then this would indicate that the ability to compromise was poor. Table 4.1
states the full results, but we can make some further relevant observations. In general, debates will
exceed two arguments, and so most of the positive results (i.e. those that state preservation of a
property occurs under all types of aggregation such as Theorem† 3, Theorem 4.8, Theorem 4.11) are
not applicable, and so preservation cannot be guaranteed. In fact, it is likely in a typical debate with
more than five arguments that most negative results apply, signalling that significant restrictions have
to be applied for preservation to occur, typically limiting the types of aggregation procedure that can
be used.

So from this perspective, the aggregation procedures in ArgSolve are not guaranteed to compromise
across the opinions of agents effectively. However, recall that these results are indicative of aggrega-
tion over all possible frameworks - it may be the case that agreement is preserved for specific scenarios,
it is just not guaranteed. This fact may be leveraged, as the ability to preview and selectively apply
aggregation procedure in the procedure selection stage can allow the host to selectively choose proce-
dures that result in preservation, should it be desired. Further, sometimes it may naturally be the case
that procedure we consider limiting, such as oligarchic rules, are in fact the most suitable aggrega-
tion rule to apply. Indeed in the case study, we saw that sometimes oligarchy may be favoured when
domain experts are present.

Qualitative Assessment

The previous evaluations have focused on an idealised view of how ArgSolve is to be used. Whilst
they are valid points, expressing the potential of the platform, ultimately a pilot using real people
is required. Therefore, a qualitative assessment was performed, where a group of participants were
gathered to debate using the platform. The idea was that by interviewing users and observing how
they interacted with the platform, the strengths and weaknesses of the debating experience could be
identified. In total, five individuals took part. These individuals had no experience in formal logic but
had previously used conversation-centric platforms (predominately social media but also some forum
sites) to debate.
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To begin, participants were introduced to the platform. This included highlighting some of the features
of the platform and outlining the stages of the debate. Although participants were not familiar with
logic, the intuition behind the semantics was communicated. Particular emphasis was expressed on the
preferred and ideal semantics, the former being advertised as a method of viewing the different sides
of the debate and the latter being said to represent agreement between such sides. An explanation
of how the relations between arguments affected the preferred semantics was given, emphasising the
conflict-freeness and counter-attacking/defensive requirements. An explanation of deductive support
was also given and participants were told to ignore the notion of necessary support so as not to
overcomplicate their intuition. A host was chosen randomly from the group. Participants were given
an initial proposal to debate; ‘Remote work is more productive than in-person work’. This was chosen
as it represented a relatively neutral topic with mixed views. A fixed timer was set for 10 minutes,
where the debate was permitted to progress until the timer expired, after which the participants
were permitted to finish the final iteration they were currently in. Participants were observed during
the debate and also interviewed for feedback afterwards. The method of interview was generally
unstructured, but there were a few areas of focus, such as the perception of the debate representation,
the effect of the extensions, and the aggregation procedure. Through this evaluation, we were able to
identify some significant areas of strength and weakness.

The participants received the debate representation well. They liked how it acted as a record of
the proposed arguments and the relationships between them. One participant remarked how the
arguments, attacks and supports often formed ‘chains of thought’ that represented the outcome of an
exchange. In those scenarios, it was clear to see when someone did not come up with an appropriate
counter-argument, or a stalemate was reached. Across the participants, there was agreement that the
presentation of the content of the arguments was not effective. Points were raised about how including
the entire argument in nodes was sometimes overwhelming, and cluttered the view. Participants said
that it was sometimes not readable, especially when the argument was lengthy. One valid concern
was raised that the layout of the argument nodes in the representation kept changing between stages.
The participant said they would re-arrange the nodes manually to a layout that suited them, but this
layout was immediately lost on progression.

Through the feedback interviews and observation, it became evident that the participants avoided
using the extension computer during the debate. In fact, the computed extensions were not factored
into the decisions made during the debate at all. When asked about this observation, there was a
general consensus that the participants did not really understand the semantics, and especially did
not feel in control of what arguments appeared in the extensions during the rule proposal stage.
Admittedly, this could have been the result of insufficient explanation during the introduction, but
regardless, this avoidance pattern does signify a major weakness in that this feature of the platform
is not accessible. One participant who did experiment with the extensions expressed frustration that
supporting arguments were not represented in the preferred extension. This was in reference to
the fact that the number of supporting arguments did not seem to ‘make an argument appear’ in
the preferred extension when an undefended attack was present. This behaviour of the preferred
semantics, inherent to its definition, was likely not intuitive as participants are used to pro and con
type of argumentation, with two equally powerful types of arguments. In their view, an attacking
argument is just as strong as a supporting argument, with it being intuitive that supporting arguments
should be leveraged to overcome an undefended attack given there are in ‘sufficient’ number. Also,
there was general disapproval of how the extensions were presented - participants did not like the
font and found it overwhelming. This could have also contributed to the reluctance to rely on the
extensions.

In general, the reactions to the aggregation process were positive. Participants were asked how fairly
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they thought their views were represented in the resulting framework, and all said they thought it
was fair. Interestingly, the participants never deviated from using a strict majority rule during the
debate, suggesting that there is little motivation to use the other aggregation rules. When asked why,
it was clear that there was an inherent belief that majority rule was fair by definition, and participants
were willing to accept the consequences of it even if it went against their views. This is likely due to
the majority rule being so pervasive throughout decision-making in society. Additionally, there were
opinions voiced that the result of aggregation was not clear, as participants could not immediately see
what relations were newly added after aggregation, relying on memory to make this comparison.

Participants were asked about their general experience on the platform. First, the discussion was di-
rected at how engaging they thought the platform was. There were mixed views on this. Participants
said the graph representation was the most engaging part of the process, and that they enjoyed col-
laborating to build it up. They felt that the real-time aspect of the platform was motivating. However,
multiple participants expressed that they sometimes felt the speed of the process was too slow, and
expressed impatience. One participant said the opposite and indicated that there was pressure to
quickly submit arguments and propose relations. As a result, they felt that they could not present
their best arguments. Then, participants were asked to compare the debate experience on ArgSolve in
comparison to conversation-centric platforms, such as social media. Again, emphasis was expressed
on the debate representation being useful, and participants said they found it easier to keep track of
arguments on ArgSolve in comparison to conversation-centric platforms. However, some participants
expressed that they found conversation-centric platforms more convenient, stating that it was unlikely
that people would practically gather to set up a debate room in a live setting like on ArgSolve. In
addition, it was reiterated that on conversation-centric platforms, users are given ample time to gen-
erate and assess arguments. Fundamentally, participants saw ArgSolve as a different experience with
different objectives in mind rather than a replacement for conversation-centric debate platforms.

Discussion: In summary, this qualitative assessment expressed some of the strengths and weak-
nesses of the tool. In general, there were positive reactions to the debate representation and fairness
of aggregation, suggesting that there is validity in the usage of bipolar ABA aggregation in this tool.
There were specific reactions that expressed improvements over conversation-centric debate in rela-
tion to these aspects, which can positively attest to an improvement compared with such platforms.
However, a significant weakness was the perception of the extensions, which were hardly used at all
during the session. In general, this signifies a major issue, in that the platform is inaccessible to users
without training in logic. The extensions were one of the flagship features of the platform, aiming
to help participants to identify strong arguments and to aid in general comprehension. Instead, the
opposite was true, and participants were generally confused and overwhelmed. Throughout the eval-
uation, several usability issues were identified. Although important to discuss, these issues were not
fundamental to the design of the platform and can be improved relatively easily. Overall, participants
recognised ArgSolve as a distinct debate experience, acknowledging its value alongside conversation-
centric platforms rather than considering it a replacement for them.

System Performance

Concurrent users: To simulate a substantial user load on the site, Locust [45], an open-source load
testing tool, was used to simulate a high number of concurrent users in a single debate room. Ac-
cording to Nielsen in [46], it is essential to maintain a response time below 1000ms to ensure the
continuity of a user’s train of thought. We adopted this metric as our benchmark standard. The testing
involved various configurations of concurrent users, each maintained for a period of 5 minutes. Within
this time frame, each simulated user would make a request approximately every 1.5 seconds. These
requests were proportionally balanced to mimic the typical frequency of actions within a debate sce-

51



Chapter 7. Evaluation

10 1000 1125 1250 1750 2500

0

2,000

4,000

6,000

8,000

Concurrent users

A
ve

ra
ge

re
sp

on
se

ti
m

e
(m

s)

(a)

1 50 100 150 200 250 300

0

2,000

4,000

Assumptions

Ex
ec

ut
io

n
ti

m
e

(m
s)

(b)

Figure 7.5: Bar charts illustrating the result of the stress tests; the horizontal red line indicates 1000ms,
the limit below which we consider the response time to be satisfactory.

nario—acknowledging that certain actions, such as creating a room, occur less frequently than others,
such as fetching the room’s state. The results of the stress test are displayed in Figure 7.5a. As can be
seen, the system was able to accommodate approximately 1125 concurrent users while maintaining
the average response time within our benchmark limit of 1000ms.

Computing extensions: A further test was performed to assess the performance of the extension
computer. A number of frameworks, with increasing assumption size, were given to the extension
computer, and the execution time to compute the extensions for all semantics was measured. The
results are outlined in Figure 7.5b, where, according to the same benchmark in the previous test, the
program could handle approximately 150 assumptions (which correspond to the number of arguments
in a debate) before the response time would be considered unsatisfactory.

Discussion: The system performance results outline the limitations of the current implementation;
showing relatively positive results in terms of supporting a large number of concurrent users and
arguments in a worst-case scenario. Although this indicates that the system performance itself may be
scalable, it does not indicate how the qualitative aspects such as debate comprehension scale.
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Conclusions & Future Work

To conclude, we review the key findings and insights uncovered through the project. In this chapter,
we summarise the main outcomes, discuss their significance and explore directions for future research.
Additionally, we also discuss some ethical considerations.

Preservation Results

The first contribution of this project is a comprehensive study on bipolar ABA aggregation. In chap-
ter 4, we systematically examined the results from [13] and improved upon the existing theorems and
proofs, introducing novel results and addressing any necessary corrections. A summary of these results
was presented in Table 4.1. As discussed in section 7.1, the results are broadly pessimistic, expressing
that properties are only preserved under limiting circumstances. These circumstances ranged from
restricting the aggregation rule, such as requiring a nomination, oligarchic or (in the worst case) dic-
tatorial rules, to restricting the number of assumptions permitted in the input frameworks. Although
the results were negative, the outcome of the study was positive, underscoring the critical need to
recognise and navigate the inherent constraints of bipolar ABA aggregation in practical applications.

There are many directions in which to extend this study. Firstly, there is potential to develop further
preservation results under the same assumptions as in this study. In particular, it would be valuable to
explore more fine-grained conditions (such as assumptions on other components of the input frame-
works ⟨L,R,A,— ⟩), which can be used to more accurately describe the theoretical capabilities of
aggregation. For example, a result such as Theorem† 2 expresses that conflict-freeness is preserved
under restrictions to input rules. Perhaps restrictions could be found on other components that could
guarantee the preservation of properties, which may result in further positive (albeit more restricting)
results. Secondly, it is important to acknowledge that the results obtained in this study are limited to
a specific subset of aggregation procedures. Recall that the procedures under study were all unani-
mous, grounded, neutral independent and monotonic (see paragraph 2.3). By relaxing or enforcing
different combinations of axioms, it becomes possible to generate alternative aggregation procedures.
If we relax even further assumptions, such as not assuming that all agents propose rules over the
same assumptions, the resulting aggregation procedure would be interesting to study as well. In gen-
eral, conducting further research on different aggregation methods holds great potential. The focus
should be on finding approaches that better preserve semantic properties. Such investigations would
contribute to a better understanding of aggregation and its practical implications.

ArgSolve

Another contribution is the development of a novel application of bipolar ABA aggregation, in the
form of ArgSolve, a structured debate platform. In chapter 5, the development process was sum-
marised, presenting how argumentation and aggregation were naturally suited to this application.
The main feature of the platform is the debate system, where users can join and create debate rooms.
In these rooms, participants progress through discrete debate stages, collaboratively building a debate
representation by generating arguments and aggregating proposed relations. Various features were
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implemented to improve the debate experience over conversation-centric debate; including an interac-
tive debate representation, methods to view dialectically justified sets of arguments (which leveraged
a novel extension computer for bipolar ABA semantics) to improve debate comprehension and aggre-
gation mechanisms to account for the potentially conflicting opinions of participants. Another main
feature is the framework creator, which allows users to create and explore debate representations at
their own pace. In the evaluation, we found that ArgSolve presented an improvement over some
aspects of conversation-centric debate, including having a more expressive debate representation and
perceived fairness of the representation of opinions during debate. However, there were several lim-
itations found in the implementation, including the poor ability to theoretically aggregate opinions
(informed by the preservation results), lack of accessibility of the tool to users not familiar with logic
and issues around general usability and presentation of the platform. A system evaluation also con-
cluded that the implementation could support up to 1125 concurrent users and debates with up to 150
arguments.

In future, there are several ways in which the experience in ArgSolve can be improved and expanded.
Firstly, the limitations expressed in the evaluation section can be addressed. Improvements to preser-
vation during aggregation can naturally be improved by exploring new types of aggregation procedure,
as described in chapter 8. The lack of accessibility is fundamentally linked to the poor presentation
of extensions and lack of knowledge around formal logic. To remedy this, future work could focus on
producing a tutorial section for the platform, where the semantics are explained in detail with exam-
ples and the usage of the debate system is outlined. Further, it would be beneficial if users could be
provided with an interactive example in which their natural preference toward a support notion could
be found. For instance, users could be shown an argument and a supporting argument, and then be
asked to indicate which argument supports which. In this way, the system could determine if they
preferred deductive or necessary support. Another way to improve accessibility is to improve the pre-
sentation of extensions, by integrating them directly into the debate representation somehow. Another
direction would be to expand methods of summarising the debate, moving away from semantics. The
extensions for the semantics only show perspectives that are acceptable according to the semantics.
Sets of arguments that may be related, such as representing a specific side of the debate, are not
summarised if they are not acceptable. Although not dialectically justified, it would still be useful,
in terms of aiding debate comprehension, to view these related arguments. There is also potential to
use natural language processing to automatically moderate arguments (merging semantically equiva-
lent arguments) and to also suggest attacks and supports between arguments based on the contents
of the arguments. There is also an opportunity to further improve the debate representation, which
was perceived to be one of the most engaging features of the platform. To address concerns about
the representation becoming overwhelming (as arguments and relations are added), a new method of
visualising the debate could be developed. Some existing mind-mapping systems allow nested hierar-
chies to address this issue. Similarly, complex exchanges around certain arguments during the debate
could be allowed to collapse or be focused upon to lessen the cognitive load on the users.

In terms of completely new features, it would be interesting if the platform could support an alternate
asynchronous debate mode. Currently, debates can only take place in real-time rooms, where a host
has to create a game and then participants have to explicitly join and be present for the duration
of the debate. However, on platforms like Kialo, large asynchronous debates are supported, where
participants can contribute and respond at their convenience, allowing for a more flexible debate
environment. This type of debate would be able to support significantly more participants, which
could be useful when the platform is being used in decision-making, representing the views of a large
population. The system would have to be adapted to support this from a performance perspective:
some debates in Kialo have up to 3000 claims (arguments) and the website regularly sees around 5000
visits per day.
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Program for Computing Extensions

The final major contribution of this project is a novel program for computing the extensions of each
of the bipolar ABA semantics. During the development of the debate system, it became apparent that
such a program was necessary. In chapter 6, a program was specified to find all such extensions of a
given bipolar ABA framework using ASP. The specification of the program included a soundness and
completeness proof for the modules of each of the semantics, verifying the correctness of the solution.

With this program, there is potential to further improve the debate experience in ArgSolve; namely,
the ground atoms of the answer sets of the program can be used to communicate why certain subsets
of arguments are dialectically justified according to the semantics. In the same vein, we could also
leverage the program to state why a given subset of arguments is not acceptable under the semantics,
which could help participants understand where to direct counter-arguments or supporting arguments
to make their arguments valid. For instance, if a potential extension fails the admissibility check, the
predicates that caused the failure, such as attacks(b, a) and the non-existence of defeated(a) which de-
rive not defended(a) in the case there is an undefended attack, can be displayed in the representation
viewer in ArgSolve. This would help address accessibility concerns by improving explainability and
transparency in how the extensions are computed and justified.

Ethical Considerations

There are a few points of ethical consideration that are noteworthy, all related to the debate platform.
Firstly, it is important to recognise that the output of the debate is the outcome of the debate process
as a whole, which may be flawed for other reasons that cannot be overcome by simply structuring
the debate. As a result, the output of the debate, in the form of the extensions, should not be taken
as an authority to rationalise any specific cause or action without careful deliberation. Consider that
the conditions for acceptability according to the semantics are ultimately arbitrary criteria and may or
may not take into account other characteristics of arguments that make them typically justified. For in-
stance, although many arguments may support a given argument, a single undefended attack defeats
the argument according to some of the semantics. In this case, some may view that the number of
supporting arguments should affect such an attack, such as weakening it. Some may also consider that
the semantics under consideration lack nuance, categorising arguments as either acceptable or unac-
ceptable. Another view could be that a more fine-grained distinction could be made, incorporating
a quantitative measure of strength as seen in argumentation formalisms that use gradual evaluation
methods [47]. In this project, we have chosen to use bipolar ABA semantics because, in part, a novel
application was desired to be found for this type of argumentation. Although our choice of formalism
fits well in this scenario, a case can easily be made for using other types of argumentation. Com-
putational argumentation is an evolving field with a growing number of alternatives. Any platform
that leverages argumentation must be adaptable in this way and future development should consider
how the output of the debate is presented to communicate this. Secondly, we must also be wary that
the platform is susceptible to malicious activity and thus should be mitigated against in future work.
Currently, the platform is relatively exposed - users may freely query the backend to view the state of
ongoing debates or may intercept and modify requests with other types of information. This presents
an issue from a privacy perspective, as the opinions of individuals, in the form of the arguments and
relations they propose, may be seen by others. Users may feel that they cannot truly express their
opinions if they fear persecution or retribution. Likewise, users may send malicious requests to mod-
ify the state of the debate in their favour, which could invalidate its outcome. These types of security
concerns would need to be addressed if the platform were to ever be used at a large scale.
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Final Remarks

In this project, we have addressed several unexplored aspects of argumentation through the investiga-
tion of preservation results, the development of ArgSolve as a practical application, and the creation of
a program to compute extensions. It is important to emphasise that these contributions, while specific
in nature, are ultimately part of a broader ambition to improve discourse (and human reasoning as
a consequence). It is hoped that the discussions in this project have shed light on the potential of
argumentation, especially with respect to its ability to facilitate collaborative debate. With continued
research and development, the integration of computational tools in discourse could well become a
cornerstone in the evolution of collective reasoning and problem-solving.
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Screenshots

Figure A.1: The home page in ArgSolve (shown) allows users to create, join, and preview the state of
debates. Additionally, the framework creator can be accessed from this page.

Figure A.2: An image of the waiting stage of the debate. Users can select their own support notion and
view the host, initial proposal, and other participants in the debate.
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Figure A.3: The argument proposal stage of the debate is depicted here. Users have the ability to propose
arguments, which are then anonymously added to a shared pool of arguments. The current state of the
debate, indicated by the Aggregate section, is displayed to the user (arguments can be viewed by hovering
over a node). Furthermore, users can compute extensions (not visible in this screenshot).
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Figure A.4: The relation proposal stage; here users can modify attack and support relations based on the
current state of the debate and the newly proposed arguments. The Reset to aggregate button reverts all
modifications back to the agreed upon framework.
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Figure A.5: The procedure selection stage; in this instance showing the quota rule view. The host can
select a quota and preview the resulting framework.
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Figure A.6: The procedure selection stage; in this instance showing the oligarchy rule view. The host can
assign veto powers to the participants and preview the resulting framework.
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Figure A.7: The framework creator tool; here users can create, import and export frameworks. Some of
the extensions for the different semantics are visible.
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Further Soundness & Completeness Proofs

Set-Stable

In this section, we present the set-stable module πsetstable = πccf ∪ π′:

π′ = { defeats(Y,X)← attacks(Y,X); (B.1)

defeats(Y,X)← deduces(X,Z), attacks(Y, Z); (B.2)

defeated(X)← defeats(Y,X), in(Y ); (B.3)

⊥ ← out(Y ), not defeated(Y ); } (B.4)

If we use the splitting set X, then botX(πsetstable(F̂)) = πccf(F̂) and topX(πsetstable(F̂)) = π′. There-
fore, we can instantiate the splitting theorem (Proposition 1) as below:

AS(πsetstable(F̂)) =
⋃

J∈AS(πccf (F̂))

AS(J ∪ π′) (B.5)

Proposition 6 LetF = ⟨L,R,A,— ⟩. Then the set-stable extensions S ofF coincide withAS(πsetstable(F̂)).

PROOF. We need to prove two things:

(i) For each S ∈ S, there exists an interpretation I ∈ AS(πsetstable(F̂)) such that {a | in(a) ∈ I} = S;

(ii) For each I ∈ AS(πsetstable(F̂)) it holds that {a | in(a) ∈ I} ∈ S.

For (i), we first consider that as S is set-stable, it is also closed and conflict-free. Therefore, by
Proposition 2, there exists some J ∈ AS(πccf(F̂)) where S = {a | in(a) ∈ J}. We propose that
the interpretation I is an answer set of J ∪ π′, where it then follows that it is an answer set of
AS(πsetstable(F̂)) by (B.5).

I = J ∪ (B.6)

{defeats(a, b) | ∃R∈R{a} ⊢R b̄, a, b ∈ A} ∪ (B.7)

{defeats(a, b) | ∃R∈R{a} ⊢R c̄, ∃R∈R{b} ⊢R c, a, b, c ∈ A} ∪ (B.8)

{defeated(a) | (∃R∈R{b} ⊢R ā ∧ b ∈ S ∧ a ∈ A)∨
(∃R∈R{b} ⊢R c̄ ∧ ∃R∈R{a} ⊢R c ∧ b ∈ S ∧ {a, c} ⊆ A)} ∪

(B.9)

To show I is an answer set of J ∪π′, we need to show (a) I satisfies J ∪π′ and (b) that there exists no
K ⊂ I that satisfies (J ∪ π′)I .

For (a), we refer to the reasoning in the proof for Proposition 3(i)(a) as the setup is the same for the
satisfaction of rules (B.1) - (B.3). For rule (B.4), consider its ground instances {⊥ ← out(a), not
defeated(a) | a ∈ L}. We need to show that bodies of these ground rules are not satisfied. By
contradiction, suppose out(a) ∈ I and defeated(a) ̸∈ I for some a ∈ L. As out(a) ∈ I and {out(a) | a ∈
A \ S} by (6.11), we know that a ∈ A and a ∈ A \ S. Further, as (B.9) is the only rule that introduces
defeated(a), the absence thereof implies that ¬∃b∈S ¬(∃R∈R{b} ⊢R ā)∧¬(∃R∈R{b} ⊢R c̄∧∃R∈R{a} ⊢R
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c∧c ∈ A). But this indicates that there exists some a ̸∈ A where S does not attack Cl(a), which would
contradict our assumption that S is set-stable.

To show (b), the proof is the same as in Proposition 3(i)(b), except we do not need to consider the
not defended(·) atoms. We note that (B.4) is a constraint, so does not affect the proof.

To show (ii), take an arbitrary I ∈ AS(πsetstable(F̂)). By (B.5), we know that I ∈ AS(J ∪ π′) for some
J ∈ AS(πccf(F̂)). By Proposition 2, we know that that J corresponds to some closed and conflict-free
S = {a | in(a) ∈ J}. As J = I ∩ atoms(πccf(F̂)), then we know S = {a | in(a) ∈ I} too. It remains to
show that S is set-stable. By contradiction, suppose S is not set-stable, so there exists some β ∈ A \ S
such that S does not attack Cl(β). As S does not attack Cl(β), there does not exist α ∈ S such that
{α} ⊢R β̄ (direct attack), or {β} ⊢R γ̄ and {α} ⊢R γ̄ (attack of closure). We showed in Proposition
2 that the attacks(·, ·) and deduces(·, ·) in J correspond to the same notions in F . Therefore, we
know that for all α ∈ S, attacks(α, β) ̸∈ J and {deduces(β, γ), attacks(α, γ)} ̸⊆ J . Therefore, we
can conclude that no defeated(β) atom is derived from the rules in (B.1) - (B.3). However, as we
have that out(β) ∈ I and defeated(β) ̸∈ I, we see that the constraint (B.4) is violated. Therefore,
I ̸∈ AS(πsetstable(F̂)), which is a contradiction. □

Complete

In this section, we present the complete module πcomp = πadm ∪ πord ∪ π′:

π′ = { ok(X)← not defended(X); (B.10)

ok(X)← in(X); (B.11)

ok upto(X)← inf(X), ok(X); (B.12)

ok upto(X)← ok upto(Y ), succ(Y,X), ok(X); (B.13)

ok← ok upto(X), sup(X); (B.14)

⊥ ← not ok; } (B.15)

If we use the splitting set X, then botX(πcomp(F̂)) = πadm∪ πord(F̂) and topX(πcomp(F̂)) = π′. We can
then instantiate the splitting theorem (Proposition 1) as in (B.16) to re-use answer sets of πadm(F̂).

X = {deduces, attacks, in, out, rule, assumption, contraryOf,defeats,defeated,not defended,

lt,nsucc, succ,ninf,nsup, inf, sup}

AS(πcomp(F̂)) =
⋃

J∈AS(πadm∪ πord(F̂))

AS(J ∪ π′) (B.16)

We can further split AS(πadm ∪ πord(F̂)) by using X ′ as a splitting set. Then botX′(πadm ∪ πord(F̂)) =
πadm(F̂) and topX′(πadm ∪ πord(F̂)) = πord

X ′ = {deduces, attacks, in, out, rule, assumption, contraryOf,defeats,defeated,not defended}

AS(πadm ∪ πord(F̂)) =
⋃

J∈AS(πadm(F̂))

AS(J ∪ πord) (B.17)

Proposition 7 LetF = ⟨L,R,A,— ⟩. Then the complete extensions S ofF coincide withAS(πcomp(F̂)).
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PROOF. We need to prove two things:

(i) For each S ∈ S, there exists an interpretation I ∈ AS(πcomp(F̂)) such that {a | in(a) ∈ I} = S;

(ii) For each I ∈ AS(πcomp(F̂)) it holds that {a | in(a) ∈ I} ∈ S.

As S is complete, it is also admissible. Therefore, by Proposition 3, we know there exists some J ∈
AS(πadm(F̂)) where S = {a | in(a) ∈ J}. Then J ′ = J ∪ Ω is an answer set of J ∪ πord (we briefly
argued this in Proposition 5(i)), where it then follows that it is an answer set of πadm ∪ πord(F̂) by
(B.17). We then propose I is an answer set of J ′ ∪ π′, where it then follows by (B.16) that I is an
answer set of πcomp(F̂).

I = J ′ ∪ (B.18)

{ok(a) | ¬(S defends a)} ∪ (B.19)

{ok(a) | a ∈ S} ∪ (B.20)

{ok upto(a) | a ∈ A} ∪ (B.21)

{ok} (B.22)

To show I is an answer set of J ′ ∪ π′, we need to show (a) I satisfies J ′ ∪ π′ and (b) that there exists
no K ⊂ I that satisfies (J ′ ∪ π′)I .

To show (a), we consider each of the rules of J ′ ∪ π′ in turn. Clearly, I satisfies J ′ as J ′ ⊆ I. For rules
(B.10) and (B.11), consider that (B.19) and (B.20) include a(·) precisely when the body of the rules
are satisfied. As ok upto(a) is present in I for all a ∈ A, (B.12) and (B.13) are satisfied. Finally, as
ok ∈ I, then (B.14) and (B.15) are satisfied.

To show (b), suppose (by contradiction) that there exists some K ⊂ I such that K satisfies (J ′ ∪ π)I .
First, we note that K cannot be missing any of the ground atoms in J ′ as it satisfies (J ′∪π′)I , therefore
it must be missing some other atoms in I \ J ′. The (B.19) and (B.20) atoms cannot be omitted from
K, as they are all required to satisfy the triggering of the rules (B.10) and (B.11) due to J ′.

We can deduce that we must at least be missing some atoms of ok upto(·) (we cannot only be missing
ok, as in this case (B.14) would not be satisfied by K). Now consider δ = {a | ok upto(a) ̸∈ K}.
If we take the least element (with respect to alphabetical ordering) of δ, we can identify a single
ok upto(a) that is missing which caused the successive ok upto(·) atoms to not be included in K due
to early termination of the iteration over the assumptions in rules (B.12) - (B.13). In particular, this
ok upto(a) atom would correspond to ok(a) ̸∈ K. Thus we have that both not defended(a) and in(a)
are not in K. However, this would correspond to S defends a and a ̸∈ S, contradicting our assumption
that S is complete.

To show (ii), take an arbitrary I ∈ AS(πcomp(F̂)). By (B.16), we know that I ∈ AS(J ′ ∪ π′) for
some J ′ ∈ AS(πadm ∪ πord(F̂)). Further, by (B.17), we know that J ′ ∈ AS(J ∪ πord)) for some
J ∈ AS(πadm(F̂)). By Proposition 3, we know that there exists some admissible S = {a | in(a) ∈ J}.
As J = J ′ ∩ atoms(πadm(F̂)), J ′ = I ∩ atoms(πadm ∪ πord(F̂)) and in(·) ∈ atoms(πadm(F̂)), then
S = {a | in(a) ∈ I}.

It remains to prove that S = {a | S defends a}. For (⇒), take some a ∈ S. As S is admissible, S defends
a. For (⇐), take some a ∈ A where S defends a. We need to show a ∈ S. By contradiction, suppose
a ̸∈ S. We show that I is not an answer set. We first note that in(a) ̸∈ I and not defended(a) ̸∈ I as
S defends a. This means that ok(a) ̸∈ I as the body of rules (B.10) and (B.11) are not satisfied. But
as ok(a) ̸∈ I, we cannot derive ok. Thus the constraint (B.15) would be violated. This contradicts our
initial assumption that I ∈ AS(πcomp(F̂)).
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Well-founded

Proposition 8 Let F = ⟨L,R,A,— ⟩. Then the unique complete extension of F is S = {a | in(a) ∈
∩
J∈AS(πcomp(F̂))J}.

For soundness, it is plain to see that the output of the function is the intersection of the complete
extensions, which is the well-founded extension. For completeness, consider an arbitrary well-founded
extension S. Then S is the intersection of some number of complete extensions ∆1 ∩ · · · ∩ ∆n = S.
By Proposition 7, we know that for each ∆i, there exists a corresponding answer set Ji where ∆i =
{a | in(a) ∈ Ji}. Thus S = ∆1 ∩ · · · ∩ ∆n = {a | in(a) ∈ Ji} ∩ · · · ∩ {a | in(a) ∈ Jn} = {a | in(a) ∈
Ji ∩ · · · ∩ Jn}.

Ideal

In this section we present the ideal module. Note that π
′
pref corresponds to the π′ sub-program of

πpref .

πideal = (πadm \ { in(X)← not out(X), assumption(X); }) ∪ (B.23)

{ in(X)← not out(X), choice(X); } ∪ (B.24)

πord ∪ (B.25)

(π
′

pref \ { inN(X) ∨ outN(X)← out(X); }) ∪ (B.26)

{ inN(X) ∨ outN(X)← out(X), choice(X); (B.27)

outN(X)← out(X), not choice(X); } (B.28)

Proposition 9 LetF = ⟨L,R,A,— ⟩. Then the unique ideal extension S ofF coincides withAS(πideal(F̂∪
{choice(a) | in(a) ∈ ∩

J∈πpref(F̂)J}))

As this module largely uses elements from previous modules, we reason informally about this result
for sake of conciseness. First, notice that the input {choice(a) | in(a) ∈ ∩

J∈πpref(F̂)J} corresponds to
a member of the intersection of all preferred extensions. The admissible module πadm is re-used with
a slight modification. If we consider (B.23) and (B.24), we see that the in(·) guessing rule has been
replaced with one that enforces that choice(a) holds for every a in in(a). Thus the effect is that the
current guess can only be a subset of the intersection of the preferred extensions (corresponding to the
fact that the ideal extension must be a subset of every preferred extension). The admissible module
enforces that this guess is admissible. It remains to check that the guess is ⊆-maximal. Precisely,
it needs to be checked that there is no other admissible subset of the intersection of the preferred
extensions that is a strict superset of the current guess. To check this, the preferred module is re-
used with minor modifications (as shown in rules (B.26) - (B.28)). Consider that a corresponding to
choice(a) can either be inN(a) or outN(a). Further, note that outN(b) holds only when not choice(b).
As {choice(a) | in(a) ∈ ∩

J∈πpref(F̂)J}, the effect of this modification is that the search space is only
over supersets of the current guess that are still subsets of the intersection of the preferred extensions.
The π

′
pref module then rules out the current guess for the ideal extension if there exists an admissible

candidate in the search space. Thus any answer set of this program corresponds to an ideal extension
by this process.

We also claim that this answer set is unique. Consider that the guesses of this module are made over
the subsets of P = P1 ∩ · · · ∩ Pn where each Pi is preferred. There can only be a single admissible
candidate from P that is ⊆-maximal as the candidates are subsets of the same set P . If another answer
set were to exist, it indicates the existence of two distinct ⊆-maximal candidates, which cannot be the
case.
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